在零信任和多租户未来5G网络中防止跨网络切片中断

Shwetha Vittal, Unnati Dixit, Siddhesh Pratim Sovitkar, K. Sowjanya, A. Franklin
{"title":"在零信任和多租户未来5G网络中防止跨网络切片中断","authors":"Shwetha Vittal, Unnati Dixit, Siddhesh Pratim Sovitkar, K. Sowjanya, A. Franklin","doi":"10.1109/NetSoft57336.2023.10175424","DOIUrl":null,"url":null,"abstract":"As network slicing is the chief enabler for future Beyond 5G(B5G) and 6G networks, multiple tenants interoperate cost-effectively to provide a variety of slice services on a common physical infrastructure. However, this opens the doors to cross-slice disruptions with Man-in-the-Middle (MITM) attack which ultimately disrupts the slice services in the data plane. In this paper, we address such possible cross-network slice disruptions in a zero-trust and multi-tenant based 5G network by proposing different design techniques namely, secure communication and Artificial Intelligence (AI)-based anomaly detection to prevent them. Our experiments on a 5G testbed prototype show that in the secure communication method, Attribute-Based Encryption (ABE) provides higher security benefits in confidentiality and implicit authorization. However, symmetric encryption and integrity protection prevent cross-slice disruptions with less communication overhead, but with a weaker security level. On the other hand, with online learning and noise tolerance capabilities, AI-based Hierarchical Temporal Memory (HTM) can proactively detect the occurrences of the identified cross-slice disruptions.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing Cross Network Slice Disruptions in a Zero-Trust and Multi-Tenant Future 5G Networks\",\"authors\":\"Shwetha Vittal, Unnati Dixit, Siddhesh Pratim Sovitkar, K. Sowjanya, A. Franklin\",\"doi\":\"10.1109/NetSoft57336.2023.10175424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As network slicing is the chief enabler for future Beyond 5G(B5G) and 6G networks, multiple tenants interoperate cost-effectively to provide a variety of slice services on a common physical infrastructure. However, this opens the doors to cross-slice disruptions with Man-in-the-Middle (MITM) attack which ultimately disrupts the slice services in the data plane. In this paper, we address such possible cross-network slice disruptions in a zero-trust and multi-tenant based 5G network by proposing different design techniques namely, secure communication and Artificial Intelligence (AI)-based anomaly detection to prevent them. Our experiments on a 5G testbed prototype show that in the secure communication method, Attribute-Based Encryption (ABE) provides higher security benefits in confidentiality and implicit authorization. However, symmetric encryption and integrity protection prevent cross-slice disruptions with less communication overhead, but with a weaker security level. On the other hand, with online learning and noise tolerance capabilities, AI-based Hierarchical Temporal Memory (HTM) can proactively detect the occurrences of the identified cross-slice disruptions.\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于网络切片是未来超5G(B5G)和6G网络的主要推动者,因此多个租户可以经济高效地进行互操作,在公共物理基础设施上提供各种切片服务。然而,这为中间人(MITM)攻击的交叉切片中断打开了大门,最终破坏了数据平面中的切片服务。在本文中,我们通过提出不同的设计技术,即安全通信和基于人工智能(AI)的异常检测来防止零信任和基于多租户的5G网络中可能出现的跨网络切片中断。我们在5G测试平台原型上的实验表明,在安全通信方式中,基于属性的加密(ABE)在保密性和隐式授权方面提供了更高的安全优势。然而,对称加密和完整性保护以较少的通信开销防止了横片中断,但安全性较弱。另一方面,通过在线学习和噪声容忍能力,基于人工智能的分层时间记忆(HTM)可以主动检测已识别的横片中断的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preventing Cross Network Slice Disruptions in a Zero-Trust and Multi-Tenant Future 5G Networks
As network slicing is the chief enabler for future Beyond 5G(B5G) and 6G networks, multiple tenants interoperate cost-effectively to provide a variety of slice services on a common physical infrastructure. However, this opens the doors to cross-slice disruptions with Man-in-the-Middle (MITM) attack which ultimately disrupts the slice services in the data plane. In this paper, we address such possible cross-network slice disruptions in a zero-trust and multi-tenant based 5G network by proposing different design techniques namely, secure communication and Artificial Intelligence (AI)-based anomaly detection to prevent them. Our experiments on a 5G testbed prototype show that in the secure communication method, Attribute-Based Encryption (ABE) provides higher security benefits in confidentiality and implicit authorization. However, symmetric encryption and integrity protection prevent cross-slice disruptions with less communication overhead, but with a weaker security level. On the other hand, with online learning and noise tolerance capabilities, AI-based Hierarchical Temporal Memory (HTM) can proactively detect the occurrences of the identified cross-slice disruptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1