基于条形基础承载力上限解的近地表岩体等效摩擦角和黏聚力估算

Youn-Kyou Lee
{"title":"基于条形基础承载力上限解的近地表岩体等效摩擦角和黏聚力估算","authors":"Youn-Kyou Lee","doi":"10.7474/TUS.2015.25.3.284","DOIUrl":null,"url":null,"abstract":"The generalized Hoek-Brown failure criterion, the strength parameters of which are determined by using the GSI index, is an empirical nonlinear failure criterion of rock mass and has been widely employed in various rock engineering practices. Many rock engineering practitioners, however, are still familiar with the description of the strength of rock mass in terms of friction angle and cohesion. In addition, almost all rock mechanics softwares incorporate the simple linear Mohr-Coulomb function. Therefore, it is necessary to provide a tool to implement the Hoek-Brown function in the framework of the Mohr-Coulomb criterion. In this study, the use of upper-bound solution of limit analysis for bearing capacity of a strip footing resting on the ground surface is proposed for the estimation of the equivalent friction angle and cohesion of rock mass incorporating the generalized Hoek-Brown failure criterion. The upper-bound bearing capacity is expressed in terms of friction angle by use of the relationship between tangential friction angle and tangential cohesion implied in the generalized Hoek-Brown function. The friction angle minimizing the upper-bound bearing capacity is taken as the equivalent friction angle. Through the illustrative implementations of the proposed method, the influences of GSI,  and D on the equivalent friction angle and cohesion are investigated.","PeriodicalId":437780,"journal":{"name":"Journal of Korean Society for Rock Mechanics","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of Equivalent Friction Angle and Cohesion of Near-Surface Rock Mass Using the Upper-Bound Solution for Bearing Capacity of Strip Footing\",\"authors\":\"Youn-Kyou Lee\",\"doi\":\"10.7474/TUS.2015.25.3.284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized Hoek-Brown failure criterion, the strength parameters of which are determined by using the GSI index, is an empirical nonlinear failure criterion of rock mass and has been widely employed in various rock engineering practices. Many rock engineering practitioners, however, are still familiar with the description of the strength of rock mass in terms of friction angle and cohesion. In addition, almost all rock mechanics softwares incorporate the simple linear Mohr-Coulomb function. Therefore, it is necessary to provide a tool to implement the Hoek-Brown function in the framework of the Mohr-Coulomb criterion. In this study, the use of upper-bound solution of limit analysis for bearing capacity of a strip footing resting on the ground surface is proposed for the estimation of the equivalent friction angle and cohesion of rock mass incorporating the generalized Hoek-Brown failure criterion. The upper-bound bearing capacity is expressed in terms of friction angle by use of the relationship between tangential friction angle and tangential cohesion implied in the generalized Hoek-Brown function. The friction angle minimizing the upper-bound bearing capacity is taken as the equivalent friction angle. Through the illustrative implementations of the proposed method, the influences of GSI,  and D on the equivalent friction angle and cohesion are investigated.\",\"PeriodicalId\":437780,\"journal\":{\"name\":\"Journal of Korean Society for Rock Mechanics\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korean Society for Rock Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7474/TUS.2015.25.3.284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Society for Rock Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7474/TUS.2015.25.3.284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

广义Hoek-Brown破坏准则是一种经验非线性岩体破坏准则,其强度参数由GSI指数确定,已广泛应用于各种岩石工程实践。然而,许多岩石工程从业者仍然熟悉用摩擦角和黏聚来描述岩体的强度。此外,几乎所有的岩石力学软件都包含简单的线性莫尔-库仑函数。因此,有必要提供一种工具来实现Mohr-Coulomb准则框架下的Hoek-Brown函数。本文提出了基于广义Hoek-Brown破坏准则的地表条形基础承载力极限分析的上限解,用于估算岩体的等效摩擦角和黏聚力。利用广义Hoek-Brown函数中所蕴涵的切向摩擦角与切向黏聚力之间的关系,用摩擦角表示了上限承载力。取使承载力上限最小的摩擦角作为等效摩擦角。通过该方法的实例实现,研究了GSI、和D对等效摩擦角和黏聚力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Equivalent Friction Angle and Cohesion of Near-Surface Rock Mass Using the Upper-Bound Solution for Bearing Capacity of Strip Footing
The generalized Hoek-Brown failure criterion, the strength parameters of which are determined by using the GSI index, is an empirical nonlinear failure criterion of rock mass and has been widely employed in various rock engineering practices. Many rock engineering practitioners, however, are still familiar with the description of the strength of rock mass in terms of friction angle and cohesion. In addition, almost all rock mechanics softwares incorporate the simple linear Mohr-Coulomb function. Therefore, it is necessary to provide a tool to implement the Hoek-Brown function in the framework of the Mohr-Coulomb criterion. In this study, the use of upper-bound solution of limit analysis for bearing capacity of a strip footing resting on the ground surface is proposed for the estimation of the equivalent friction angle and cohesion of rock mass incorporating the generalized Hoek-Brown failure criterion. The upper-bound bearing capacity is expressed in terms of friction angle by use of the relationship between tangential friction angle and tangential cohesion implied in the generalized Hoek-Brown function. The friction angle minimizing the upper-bound bearing capacity is taken as the equivalent friction angle. Through the illustrative implementations of the proposed method, the influences of GSI,  and D on the equivalent friction angle and cohesion are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Low Pressure Auxiliary Fan for Local Large-opening Limestone Mines Performance Evaluation of Conical Picks for Roadheader in Copper Mines Development of an Optimized Prediction System of Round Trip Occurrence using Genetic Algorithm Study on the Convergence of the NATM Tunnel Constructed in the Weathered Granite THM Coupling Analysis for Decovalex-2015 Task B2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1