Laurent Demonet, O. Iyama, Nathan Reading, I. Reiten, Hugh Thomas
{"title":"扭转类的晶格理论:超越𝜏-tilting理论","authors":"Laurent Demonet, O. Iyama, Nathan Reading, I. Reiten, Hugh Thomas","doi":"10.1090/btran/100","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of torsion classes over a finite-dimensional algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a complete lattice which enjoys very strong properties, as <italic>bialgebraicity</italic> and <italic>complete semidistributivity</italic>. Thus its Hasse quiver carries the important part of its structure, and we introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In particular, we give a representation-theoretical interpretation of the so-called <italic>forcing order</italic>, and we prove that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is <italic>completely congruence uniform</italic>. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a two-sided ideal of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s left-parenthesis upper A slash upper I right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>I</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} (A/I)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a lattice quotient of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which is called an <italic>algebraic quotient</italic>, and the corresponding lattice congruence is called an <italic>algebraic congruence</italic>. The second part of this paper consists in studying algebraic congruences. We characterize the arrows of the Hasse quiver of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> that are contracted by an algebraic congruence in terms of the brick labelling. In the third part, we study in detail the case of preprojective algebras <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Pi\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Π<!-- Π --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for which <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s normal upper Pi\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">Π<!-- Π --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} \\Pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the Weyl group endowed with the weak order. In particular, we give a new, more representation theoretical proof of the isomorphism between <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s k upper Q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>k</mml:mi>\n <mml:mi>Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} k Q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the Cambrian lattice when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\">\n <mml:semantics>\n <mml:mi>Q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a Dynkin quiver. We also prove that, in type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the algebraic quotients of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s normal upper Pi\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">Π<!-- Π --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} \\Pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are exactly its Hasse-regular lattice quotients.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Lattice theory of torsion classes: Beyond 𝜏-tilting theory\",\"authors\":\"Laurent Demonet, O. Iyama, Nathan Reading, I. Reiten, Hugh Thomas\",\"doi\":\"10.1090/btran/100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi>A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of torsion classes over a finite-dimensional algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We show that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi>A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a complete lattice which enjoys very strong properties, as <italic>bialgebraicity</italic> and <italic>complete semidistributivity</italic>. Thus its Hasse quiver carries the important part of its structure, and we introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi>A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In particular, we give a representation-theoretical interpretation of the so-called <italic>forcing order</italic>, and we prove that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi>A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is <italic>completely congruence uniform</italic>. When <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper I\\\">\\n <mml:semantics>\\n <mml:mi>I</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">I</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a two-sided ideal of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s left-parenthesis upper A slash upper I right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>A</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>I</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} (A/I)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a lattice quotient of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi>A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> which is called an <italic>algebraic quotient</italic>, and the corresponding lattice congruence is called an <italic>algebraic congruence</italic>. The second part of this paper consists in studying algebraic congruences. We characterize the arrows of the Hasse quiver of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi>A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> that are contracted by an algebraic congruence in terms of the brick labelling. In the third part, we study in detail the case of preprojective algebras <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Pi\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Π<!-- Π --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Pi</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, for which <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s normal upper Pi\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Π<!-- Π --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} \\\\Pi</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the Weyl group endowed with the weak order. In particular, we give a new, more representation theoretical proof of the isomorphism between <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s k upper Q\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi>k</mml:mi>\\n <mml:mi>Q</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} k Q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and the Cambrian lattice when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\">\\n <mml:semantics>\\n <mml:mi>Q</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a Dynkin quiver. We also prove that, in type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the algebraic quotients of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif t sans-serif o sans-serif r sans-serif s normal upper Pi\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">s</mml:mi>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Π<!-- Π --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {tors} \\\\Pi</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are exactly its Hasse-regular lattice quotients.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
摘要
本文的目的是建立一个格理论框架来研究有限维代数a a上的偏序扭转类集合to o s a \mathsf {tors} a。我们证明了A \mathsf {tors} A是一个完备格,它具有很强的双代数性和完备半分布性。因此,它的Hasse颤振承载了其结构的重要部分,我们引入了它的Hasse颤振的砖标记,并利用它来研究它的格同余。特别地,我们给出了所谓的强迫序的一个表示理论解释,并证明了to o s a \mathsf {tors} a是完全同余一致的。当I I是a a的双边理想时,tors (a /I) \mathsf {tors} (a /I)是tors a \mathsf {tors} a的格商,称为代数商,对应的格同余称为代数同余。本文的第二部分是对代数同余的研究。我们用砖标记的形式描述了由代数同余收缩的哈塞颤振的A / mathsf {tors} A的箭头。在第三部分中,我们详细地研究了预投影代数Π \Pi的情况,其中t = 1 = Π \mathsf {tors} \Pi是弱阶Weyl群。特别地,当Q Q是Dynkin颤振时,我们给出了一个新的、更具代表性的理论证明,证明了Q Q与寒武纪晶格之间的同构。我们还证明了在A类型A中,tors Π \mathsf {tors} \Pi的代数商正是它的哈希正则格商。
Lattice theory of torsion classes: Beyond 𝜏-tilting theory
The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set torsA\mathsf {tors} A of torsion classes over a finite-dimensional algebra AA. We show that torsA\mathsf {tors} A is a complete lattice which enjoys very strong properties, as bialgebraicity and complete semidistributivity. Thus its Hasse quiver carries the important part of its structure, and we introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of torsA\mathsf {tors} A. In particular, we give a representation-theoretical interpretation of the so-called forcing order, and we prove that torsA\mathsf {tors} A is completely congruence uniform. When II is a two-sided ideal of AA, tors(A/I)\mathsf {tors} (A/I) is a lattice quotient of torsA\mathsf {tors} A which is called an algebraic quotient, and the corresponding lattice congruence is called an algebraic congruence. The second part of this paper consists in studying algebraic congruences. We characterize the arrows of the Hasse quiver of torsA\mathsf {tors} A that are contracted by an algebraic congruence in terms of the brick labelling. In the third part, we study in detail the case of preprojective algebras Π\Pi, for which torsΠ\mathsf {tors} \Pi is the Weyl group endowed with the weak order. In particular, we give a new, more representation theoretical proof of the isomorphism between torskQ\mathsf {tors} k Q and the Cambrian lattice when QQ is a Dynkin quiver. We also prove that, in type AA, the algebraic quotients of torsΠ\mathsf {tors} \Pi are exactly its Hasse-regular lattice quotients.