基于在线时序增量和递减最小二乘支持向量机的汽车发动机建模

Zhuo Yang, Shaojia Huang, Gongrui Sun, Zhenyu Deng
{"title":"基于在线时序增量和递减最小二乘支持向量机的汽车发动机建模","authors":"Zhuo Yang, Shaojia Huang, Gongrui Sun, Zhenyu Deng","doi":"10.1109/WARTIA.2014.6976328","DOIUrl":null,"url":null,"abstract":"Air-ratio relates closely to engine emissions, power and fuel consumption among all of the engine parameters. The thesis proposed an online time-sequence incremental and decremental least-squares support vector machines (OLSSVM) for engine modelling to predict the air-ratio. Experimental results show that the proposed OLSSVM can effectively predict the air-ratio to the target values under varies operating conditions and is superior to the air-ratio models available in the recent literatures. Therefore, the proposed OLSSVM is a promising scheme for automotive engine modelling.","PeriodicalId":288854,"journal":{"name":"2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automotive engine modelling based on online time-sequence incremental and decremental least-squares support vector machines\",\"authors\":\"Zhuo Yang, Shaojia Huang, Gongrui Sun, Zhenyu Deng\",\"doi\":\"10.1109/WARTIA.2014.6976328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air-ratio relates closely to engine emissions, power and fuel consumption among all of the engine parameters. The thesis proposed an online time-sequence incremental and decremental least-squares support vector machines (OLSSVM) for engine modelling to predict the air-ratio. Experimental results show that the proposed OLSSVM can effectively predict the air-ratio to the target values under varies operating conditions and is superior to the air-ratio models available in the recent literatures. Therefore, the proposed OLSSVM is a promising scheme for automotive engine modelling.\",\"PeriodicalId\":288854,\"journal\":{\"name\":\"2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARTIA.2014.6976328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARTIA.2014.6976328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在发动机的所有参数中,空气比与发动机的排放、功率和油耗密切相关。本文提出了一种用于发动机建模的在线时序增量和递减最小二乘支持向量机(OLSSVM)来预测空气比。实验结果表明,该模型能有效预测不同工况下的空气比目标值,优于现有的空气比模型。因此,所提出的OLSSVM是一种很有前途的汽车发动机建模方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automotive engine modelling based on online time-sequence incremental and decremental least-squares support vector machines
Air-ratio relates closely to engine emissions, power and fuel consumption among all of the engine parameters. The thesis proposed an online time-sequence incremental and decremental least-squares support vector machines (OLSSVM) for engine modelling to predict the air-ratio. Experimental results show that the proposed OLSSVM can effectively predict the air-ratio to the target values under varies operating conditions and is superior to the air-ratio models available in the recent literatures. Therefore, the proposed OLSSVM is a promising scheme for automotive engine modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hospital digital library based on cloud computing Design and actualization of management system in sports teaching A topology control algorithm for ribbon wireless sensor network From the user experience to optimization design in App development process Research on communication network architecture of energy internet based on SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1