一种可解释的基于人工智能的工具来预测阻塞性冠状动脉疾病的存在

Ilias Kyparissidis Kokkinidis, E. Rigas, Evangelos Logaras, A. Samaras, G. Rampidis, G. Giannakoulas, K. Kouskouras, A. Billis, P. Bamidis
{"title":"一种可解释的基于人工智能的工具来预测阻塞性冠状动脉疾病的存在","authors":"Ilias Kyparissidis Kokkinidis, E. Rigas, Evangelos Logaras, A. Samaras, G. Rampidis, G. Giannakoulas, K. Kouskouras, A. Billis, P. Bamidis","doi":"10.1145/3575879.3576014","DOIUrl":null,"url":null,"abstract":"Obstructive coronary artery disease (CAD) is characterized as significant upon detection of stenosis of coronary artery diameter. In this paper, we adapt Artificial Intelligence (AI)-based predictive models to accurately estimate the pretest likelihood of obstructive CAD on coronary computed tomography angiography (CCTA) in patients with suspected CAD. In doing so, we use patients’ objective results and variables extracted from the screening procedure in combination with demographics, medical history, social history, and other medical data. We use a dataset consisting of 77 patients and we apply a number of alternative Machine Learning (ML) algorithms to predict coronary artery stenosis severity . The ensemble voting model showed the best results across all performance metrics with an area under curve (AUC) of approximately 0.88. We also attempt to provide the clinicians with an explanation of the prediction as to make it more trustworthy.","PeriodicalId":164036,"journal":{"name":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards an Explainable AI-based Tool to Predict the Presence of Obstructive Coronary Artery Disease\",\"authors\":\"Ilias Kyparissidis Kokkinidis, E. Rigas, Evangelos Logaras, A. Samaras, G. Rampidis, G. Giannakoulas, K. Kouskouras, A. Billis, P. Bamidis\",\"doi\":\"10.1145/3575879.3576014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstructive coronary artery disease (CAD) is characterized as significant upon detection of stenosis of coronary artery diameter. In this paper, we adapt Artificial Intelligence (AI)-based predictive models to accurately estimate the pretest likelihood of obstructive CAD on coronary computed tomography angiography (CCTA) in patients with suspected CAD. In doing so, we use patients’ objective results and variables extracted from the screening procedure in combination with demographics, medical history, social history, and other medical data. We use a dataset consisting of 77 patients and we apply a number of alternative Machine Learning (ML) algorithms to predict coronary artery stenosis severity . The ensemble voting model showed the best results across all performance metrics with an area under curve (AUC) of approximately 0.88. We also attempt to provide the clinicians with an explanation of the prediction as to make it more trustworthy.\",\"PeriodicalId\":164036,\"journal\":{\"name\":\"Proceedings of the 26th Pan-Hellenic Conference on Informatics\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th Pan-Hellenic Conference on Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575879.3576014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575879.3576014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阻塞性冠状动脉疾病(CAD)以冠状动脉直径狭窄为特征。在本文中,我们采用基于人工智能(AI)的预测模型来准确估计疑似CAD患者的冠状动脉计算机断层扫描血管造影(CCTA)中梗阻性CAD的预测可能性。在此过程中,我们使用了患者的客观结果和从筛查过程中提取的变量,并结合了人口统计学、病史、社会史和其他医疗数据。我们使用了一个由77名患者组成的数据集,我们应用了许多替代的机器学习(ML)算法来预测冠状动脉狭窄的严重程度。集成投票模型在所有性能指标上显示出最佳结果,曲线下面积(AUC)约为0.88。我们也试图为临床医生提供预测的解释,以使其更值得信赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards an Explainable AI-based Tool to Predict the Presence of Obstructive Coronary Artery Disease
Obstructive coronary artery disease (CAD) is characterized as significant upon detection of stenosis of coronary artery diameter. In this paper, we adapt Artificial Intelligence (AI)-based predictive models to accurately estimate the pretest likelihood of obstructive CAD on coronary computed tomography angiography (CCTA) in patients with suspected CAD. In doing so, we use patients’ objective results and variables extracted from the screening procedure in combination with demographics, medical history, social history, and other medical data. We use a dataset consisting of 77 patients and we apply a number of alternative Machine Learning (ML) algorithms to predict coronary artery stenosis severity . The ensemble voting model showed the best results across all performance metrics with an area under curve (AUC) of approximately 0.88. We also attempt to provide the clinicians with an explanation of the prediction as to make it more trustworthy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Machine Learning in Drug Discovery: Current State and Challenges CNN-based Segmentation and Classification of Sound Streams under realistic conditions Exam Wizard e-assessment platform: new features, field test results and instructor’s experience A Neuro-Symbolic Approach for Fault Diagnosis in Smart Power Grids A combination of a Proximity technique and Weighted average for LP Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1