基于深度学习技术的英语-卡纳达语代码转换文本情感分析

Ramesh Chundi, Vishwanath R. Hulipalled, J. B. Simha
{"title":"基于深度学习技术的英语-卡纳达语代码转换文本情感分析","authors":"Ramesh Chundi, Vishwanath R. Hulipalled, J. B. Simha","doi":"10.1109/ICSTCEE49637.2020.9277030","DOIUrl":null,"url":null,"abstract":"Usage of social media has become more widespread to express sentiment, emotion about public events, government policies, product reviews etc. Performing Sentiment Analysis (SA) on social media data will give more and more insights about user’s behavior. Multilingual society like India, it is very common to use code switch text in social media to express their views. Switching between languages while communicating is refer as code mixing or code switching. Analyzing this code switch text and getting the useful information from this too harder because of its unstructured linguistic nature. In this paper, we proposed a hybrid model called SAEKCS for sentiment analysis on Kannada-English code switch text. Our proposed model uses deep learning techniques like Convolutional Neural Network (CNN) and Bidirectional Long Short Term Memory (BiLSTM) for sentiment analysis in code switch text. Our experimental results shows that 77.6% of accuracy and 69.6% of coverage. These results are much better than existing works [17] [18].","PeriodicalId":113845,"journal":{"name":"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SAEKCS: Sentiment Analysis for English – Kannada Code SwitchText Using Deep Learning Techniques\",\"authors\":\"Ramesh Chundi, Vishwanath R. Hulipalled, J. B. Simha\",\"doi\":\"10.1109/ICSTCEE49637.2020.9277030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Usage of social media has become more widespread to express sentiment, emotion about public events, government policies, product reviews etc. Performing Sentiment Analysis (SA) on social media data will give more and more insights about user’s behavior. Multilingual society like India, it is very common to use code switch text in social media to express their views. Switching between languages while communicating is refer as code mixing or code switching. Analyzing this code switch text and getting the useful information from this too harder because of its unstructured linguistic nature. In this paper, we proposed a hybrid model called SAEKCS for sentiment analysis on Kannada-English code switch text. Our proposed model uses deep learning techniques like Convolutional Neural Network (CNN) and Bidirectional Long Short Term Memory (BiLSTM) for sentiment analysis in code switch text. Our experimental results shows that 77.6% of accuracy and 69.6% of coverage. These results are much better than existing works [17] [18].\",\"PeriodicalId\":113845,\"journal\":{\"name\":\"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCEE49637.2020.9277030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCEE49637.2020.9277030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

使用社交媒体来表达对公共事件、政府政策、产品评论等的情绪和情感已经变得越来越普遍。对社交媒体数据进行情感分析(Sentiment Analysis, SA),可以让我们对用户行为有更深入的了解。像印度这样的多语言社会,在社交媒体上使用代码转换文本来表达自己的观点是很常见的。在通信过程中,语言之间的切换被称为代码混合或代码切换。由于其非结构化的语言特性,分析这种代码转换文本并从中获取有用的信息非常困难。在本文中,我们提出了一种混合模型SAEKCS用于卡纳那语-英语代码转换文本的情感分析。我们提出的模型使用卷积神经网络(CNN)和双向长短期记忆(BiLSTM)等深度学习技术进行代码转换文本的情感分析。我们的实验结果表明,准确率为77.6%,覆盖率为69.6%。这些结果远远优于已有的研究[17][18]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAEKCS: Sentiment Analysis for English – Kannada Code SwitchText Using Deep Learning Techniques
Usage of social media has become more widespread to express sentiment, emotion about public events, government policies, product reviews etc. Performing Sentiment Analysis (SA) on social media data will give more and more insights about user’s behavior. Multilingual society like India, it is very common to use code switch text in social media to express their views. Switching between languages while communicating is refer as code mixing or code switching. Analyzing this code switch text and getting the useful information from this too harder because of its unstructured linguistic nature. In this paper, we proposed a hybrid model called SAEKCS for sentiment analysis on Kannada-English code switch text. Our proposed model uses deep learning techniques like Convolutional Neural Network (CNN) and Bidirectional Long Short Term Memory (BiLSTM) for sentiment analysis in code switch text. Our experimental results shows that 77.6% of accuracy and 69.6% of coverage. These results are much better than existing works [17] [18].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flower Classification using Deep Learning models An Unprecedented PSO-PID Optimized Glucose Homeostasis Improving elasticity in cloud with predictive algorithms A Second Order-Second Order Generalized Integrator for Three - Phase Single – Stage Multifunctional Grid-Connected SPV System Continuous Compliance model for Hybrid Multi-Cloud through Self-Service Orchestrator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1