使用元启发式算法选择的优化特征从病变图像中检测黑色素瘤

Soumen Mukherjee, A. Adhikari, M. Roy
{"title":"使用元启发式算法选择的优化特征从病变图像中检测黑色素瘤","authors":"Soumen Mukherjee, A. Adhikari, M. Roy","doi":"10.4018/ijhisi.288542","DOIUrl":null,"url":null,"abstract":"This paper deals with a simple but efficient method for detection of deadly malignant melanoma with optimized hand-crafted feature sets selected by three alternative metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Simulated Annealing (SA). Total 1898 number of features relating to lesion shapes, colors and textures are extracted from each of the 170 non-dermoscopy camera images of the popular MED-NODE dataset. This large feature set is then optimized and the number of features is reduced to up-to the range of single digit using metaheuristic algorithms as feature selector. Two well-known supervised classifiers, i.e. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are used to classify malignant and benign lesions. The best classification accuracy result found by this method is 87.69% with only 7 features selected by PSO using ANN classifier which is far better than the results found in the literature so far.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Melanoma Detection From Lesion Images Using Optimized Features Selected by Metaheuristic Algorithms\",\"authors\":\"Soumen Mukherjee, A. Adhikari, M. Roy\",\"doi\":\"10.4018/ijhisi.288542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a simple but efficient method for detection of deadly malignant melanoma with optimized hand-crafted feature sets selected by three alternative metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Simulated Annealing (SA). Total 1898 number of features relating to lesion shapes, colors and textures are extracted from each of the 170 non-dermoscopy camera images of the popular MED-NODE dataset. This large feature set is then optimized and the number of features is reduced to up-to the range of single digit using metaheuristic algorithms as feature selector. Two well-known supervised classifiers, i.e. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are used to classify malignant and benign lesions. The best classification accuracy result found by this method is 87.69% with only 7 features selected by PSO using ANN classifier which is far better than the results found in the literature so far.\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijhisi.288542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.288542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种简单而有效的致命恶性黑色素瘤检测方法,该方法通过三种可选的元启发式算法,即粒子群算法(PSO)、蚁群算法(ACO)和模拟退火算法(SA)来优化手工制作的特征集。从流行的MED-NODE数据集的170张非皮肤镜相机图像中提取出与病变形状、颜色和纹理相关的总共1898个特征。然后使用元启发式算法作为特征选择器对这个大型特征集进行优化,并将特征数量减少到个位数的范围。采用支持向量机(SVM)和人工神经网络(ANN)两种著名的监督分类器对恶性病变和良性病变进行分类。该方法在使用神经网络分类器的粒子群算法只选择7个特征的情况下,获得了87.69%的最佳分类准确率,远远优于目前文献的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melanoma Detection From Lesion Images Using Optimized Features Selected by Metaheuristic Algorithms
This paper deals with a simple but efficient method for detection of deadly malignant melanoma with optimized hand-crafted feature sets selected by three alternative metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Simulated Annealing (SA). Total 1898 number of features relating to lesion shapes, colors and textures are extracted from each of the 170 non-dermoscopy camera images of the popular MED-NODE dataset. This large feature set is then optimized and the number of features is reduced to up-to the range of single digit using metaheuristic algorithms as feature selector. Two well-known supervised classifiers, i.e. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are used to classify malignant and benign lesions. The best classification accuracy result found by this method is 87.69% with only 7 features selected by PSO using ANN classifier which is far better than the results found in the literature so far.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of Electronic Health Records in Virtual Health Environments: The Case of Rocket Health in Uganda Hospital Management Practice of Combined Prediction Method Based on Neural Network Tablet in the Consultation Room and Physician Satisfaction Digital Disparities in Patient Adoption of Telemedicine: A Qualitative Analysis of the Patient Experience A Deep Neural Network for Detecting Coronavirus Disease Using Chest X-Ray Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1