5G关键任务云机器人应用中URLLC的深度强化学习

T. Ho, T. Nguyen, K. Nguyen, M. Cheriet
{"title":"5G关键任务云机器人应用中URLLC的深度强化学习","authors":"T. Ho, T. Nguyen, K. Nguyen, M. Cheriet","doi":"10.1109/GLOBECOM46510.2021.9685978","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of robot swarm control in 5G mission-critical robotic applications, i.e., in an automated grid-based warehouse scenario. Such application requires both the kinematic energy consumption of the robots and the ultra-reliable and low latency communication (URLLC) between the central controller and the robot swarm to be jointly optimized in real-time. The problem is formulated as a nonconvex optimization problem since the achievable rate and decoding error probability with short block-length are neither convex nor concave in bandwidth and transmit power. We propose a deep reinforcement learning (DRL) based approach that employs the deep deterministic policy gradient (DDPG) method and convolutional neural network (CNN) to achieve a stationary optimal control policy that consists of a number of continuous and discrete actions. Numerical results show that our proposed multi-agent DDPG algorithm achieves a performance close to the optimal baseline and outperforms the single-agent DDPG in terms of decoding error probability and energy efficiency.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Reinforcement Learning for URLLC in 5G Mission-Critical Cloud Robotic Application\",\"authors\":\"T. Ho, T. Nguyen, K. Nguyen, M. Cheriet\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the problem of robot swarm control in 5G mission-critical robotic applications, i.e., in an automated grid-based warehouse scenario. Such application requires both the kinematic energy consumption of the robots and the ultra-reliable and low latency communication (URLLC) between the central controller and the robot swarm to be jointly optimized in real-time. The problem is formulated as a nonconvex optimization problem since the achievable rate and decoding error probability with short block-length are neither convex nor concave in bandwidth and transmit power. We propose a deep reinforcement learning (DRL) based approach that employs the deep deterministic policy gradient (DDPG) method and convolutional neural network (CNN) to achieve a stationary optimal control policy that consists of a number of continuous and discrete actions. Numerical results show that our proposed multi-agent DDPG algorithm achieves a performance close to the optimal baseline and outperforms the single-agent DDPG in terms of decoding error probability and energy efficiency.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们研究了5G关键任务机器人应用中的机器人群控制问题,即基于自动化网格的仓库场景。这种应用既需要机器人的运动能耗,又需要中央控制器与机器人群之间的超可靠低延迟通信(URLLC)进行实时联合优化。由于短块长度的可达率和译码错误率在带宽和传输功率上既不凸也不凹,因此将该问题表述为非凸优化问题。我们提出了一种基于深度强化学习(DRL)的方法,该方法采用深度确定性策略梯度(DDPG)方法和卷积神经网络(CNN)来实现由许多连续和离散动作组成的平稳最优控制策略。数值结果表明,我们提出的多智能体DDPG算法的性能接近最优基线,并且在解码错误概率和能效方面优于单智能体DDPG算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning for URLLC in 5G Mission-Critical Cloud Robotic Application
In this paper, we investigate the problem of robot swarm control in 5G mission-critical robotic applications, i.e., in an automated grid-based warehouse scenario. Such application requires both the kinematic energy consumption of the robots and the ultra-reliable and low latency communication (URLLC) between the central controller and the robot swarm to be jointly optimized in real-time. The problem is formulated as a nonconvex optimization problem since the achievable rate and decoding error probability with short block-length are neither convex nor concave in bandwidth and transmit power. We propose a deep reinforcement learning (DRL) based approach that employs the deep deterministic policy gradient (DDPG) method and convolutional neural network (CNN) to achieve a stationary optimal control policy that consists of a number of continuous and discrete actions. Numerical results show that our proposed multi-agent DDPG algorithm achieves a performance close to the optimal baseline and outperforms the single-agent DDPG in terms of decoding error probability and energy efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1