学习文档理解的上下文规则

G. Semeraro, F. Esposito, D. Malerba
{"title":"学习文档理解的上下文规则","authors":"G. Semeraro, F. Esposito, D. Malerba","doi":"10.1109/CAIA.1994.323685","DOIUrl":null,"url":null,"abstract":"We propose a supervised inductive learning approach for the problem of document understanding, that is, recognizing logical components of a document. For this purpose, FOCL and NDUBI/H, two systems that learn Horn clauses, have been employed. Several experimental results are reported and a critical view of the underlying independence assumption, made by almost all systems that learn from examples, is presented. This led us to redefine the problem of document understanding in terms of a new strategy of supervised inductive learning, called contextual learning. Experiments, in which a dependency hierarchy between concepts is defined, show that contextual rules increase predictive accuracy and decrease learning time for labelling problems, like document understanding. Encouraging results have been obtained when we tried to discover a linear dependency order by means of statistical methods.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Learning contextual rules for document understanding\",\"authors\":\"G. Semeraro, F. Esposito, D. Malerba\",\"doi\":\"10.1109/CAIA.1994.323685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a supervised inductive learning approach for the problem of document understanding, that is, recognizing logical components of a document. For this purpose, FOCL and NDUBI/H, two systems that learn Horn clauses, have been employed. Several experimental results are reported and a critical view of the underlying independence assumption, made by almost all systems that learn from examples, is presented. This led us to redefine the problem of document understanding in terms of a new strategy of supervised inductive learning, called contextual learning. Experiments, in which a dependency hierarchy between concepts is defined, show that contextual rules increase predictive accuracy and decrease learning time for labelling problems, like document understanding. Encouraging results have been obtained when we tried to discover a linear dependency order by means of statistical methods.<<ETX>>\",\"PeriodicalId\":297396,\"journal\":{\"name\":\"Proceedings of the Tenth Conference on Artificial Intelligence for Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth Conference on Artificial Intelligence for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIA.1994.323685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种有监督的归纳学习方法来解决文档理解问题,即识别文档的逻辑组件。为此,我们使用了FOCL和NDUBI/H这两个学习霍恩分句的系统。报告了几个实验结果,并提出了对几乎所有从实例中学习的系统所做的潜在独立性假设的批判观点。这导致我们根据一种新的监督归纳学习策略(称为上下文学习)来重新定义文档理解问题。定义概念之间依赖层次的实验表明,上下文规则提高了预测的准确性,减少了标签问题(如文档理解)的学习时间。当我们试图用统计方法发现线性依赖顺序时,得到了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning contextual rules for document understanding
We propose a supervised inductive learning approach for the problem of document understanding, that is, recognizing logical components of a document. For this purpose, FOCL and NDUBI/H, two systems that learn Horn clauses, have been employed. Several experimental results are reported and a critical view of the underlying independence assumption, made by almost all systems that learn from examples, is presented. This led us to redefine the problem of document understanding in terms of a new strategy of supervised inductive learning, called contextual learning. Experiments, in which a dependency hierarchy between concepts is defined, show that contextual rules increase predictive accuracy and decrease learning time for labelling problems, like document understanding. Encouraging results have been obtained when we tried to discover a linear dependency order by means of statistical methods.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OaSiS: integrating safety reasoning for decision support in oncology Memory-based parsing with parallel marker-passing A study of an expert system for interpreting human walking disorders Integrating case-based reasoning, knowledge-based approach and Dijkstra algorithm for route finding Learning control knowledge through cases in schedule optimization problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1