求解非线性方程的两种新的五阶收敛三步预测校正方法

Yunhong Hu, Liang Fang, G. He
{"title":"求解非线性方程的两种新的五阶收敛三步预测校正方法","authors":"Yunhong Hu, Liang Fang, G. He","doi":"10.1109/CINC.2010.5643799","DOIUrl":null,"url":null,"abstract":"In this paper, we present two new three-step predictor-corrector methods for solving nonlinear equations. This two algorithms are free from second derivative and per iteration they only require three evaluations of the given function and one evaluation of its first derivative. Convergence analysis shows that they are fifth-order convergent. Numerical tests demonstrate that both of the two new methods are more efficient and more practical than most of known variants of two-step methods.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two new three-step predictor-corrector methods with fifth-order convergence for solving nonlinear equations\",\"authors\":\"Yunhong Hu, Liang Fang, G. He\",\"doi\":\"10.1109/CINC.2010.5643799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present two new three-step predictor-corrector methods for solving nonlinear equations. This two algorithms are free from second derivative and per iteration they only require three evaluations of the given function and one evaluation of its first derivative. Convergence analysis shows that they are fifth-order convergent. Numerical tests demonstrate that both of the two new methods are more efficient and more practical than most of known variants of two-step methods.\",\"PeriodicalId\":227004,\"journal\":{\"name\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2010.5643799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了求解非线性方程的两种新的三步预测校正方法。这两种算法不需要二阶导数,并且每次迭代只需要对给定函数求三次求一次导数。收敛性分析表明它们是五阶收敛的。数值试验表明,这两种新方法比大多数已知的两步法更有效,更实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two new three-step predictor-corrector methods with fifth-order convergence for solving nonlinear equations
In this paper, we present two new three-step predictor-corrector methods for solving nonlinear equations. This two algorithms are free from second derivative and per iteration they only require three evaluations of the given function and one evaluation of its first derivative. Convergence analysis shows that they are fifth-order convergent. Numerical tests demonstrate that both of the two new methods are more efficient and more practical than most of known variants of two-step methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1