基于自适应k均值算法的用户用电量预测

Li Zhu, Bin Liu
{"title":"基于自适应k均值算法的用户用电量预测","authors":"Li Zhu, Bin Liu","doi":"10.1109/SmartCloud55982.2022.00026","DOIUrl":null,"url":null,"abstract":"When predicting the total power load of many users, the computing resources often can’t keep up with the growth rate of the total amount of data, and it is difficult to analyze effectively the data in the actual environment. This paper firstly considers clustering users, then predicts each cluster separately, and finally summarizes the results of each cluster to get the result. This paper firstly performs PCA dimension reduction on user data, and then uses the adaptive K-Means clustering method to determine the number of clusters and the initial cluster center, and then uses the determined parameters to cluster the users, and then builds a model for each cluster user and sum up the forecast results to get the total power load. In order to illustrate the effect of this method under different models, this paper establishes XGBoost, CatBoost and LightGBM models respectively and predicts the total power load of all users. From the experimental results, it can be seen that this method is consistent with the actual data trend, and the prediction effect is better than that of directly modeling all user data.","PeriodicalId":104366,"journal":{"name":"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of User Electricity Consumption based on Adaptive K-Means Algorithm\",\"authors\":\"Li Zhu, Bin Liu\",\"doi\":\"10.1109/SmartCloud55982.2022.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When predicting the total power load of many users, the computing resources often can’t keep up with the growth rate of the total amount of data, and it is difficult to analyze effectively the data in the actual environment. This paper firstly considers clustering users, then predicts each cluster separately, and finally summarizes the results of each cluster to get the result. This paper firstly performs PCA dimension reduction on user data, and then uses the adaptive K-Means clustering method to determine the number of clusters and the initial cluster center, and then uses the determined parameters to cluster the users, and then builds a model for each cluster user and sum up the forecast results to get the total power load. In order to illustrate the effect of this method under different models, this paper establishes XGBoost, CatBoost and LightGBM models respectively and predicts the total power load of all users. From the experimental results, it can be seen that this method is consistent with the actual data trend, and the prediction effect is better than that of directly modeling all user data.\",\"PeriodicalId\":104366,\"journal\":{\"name\":\"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartCloud55982.2022.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartCloud55982.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在对众多用户的总电力负荷进行预测时,计算资源往往跟不上数据总量的增长速度,难以对实际环境中的数据进行有效分析。本文首先考虑聚类用户,然后分别对每个聚类进行预测,最后对每个聚类的结果进行汇总得到结果。本文首先对用户数据进行PCA降维,然后使用自适应K-Means聚类方法确定聚类个数和初始聚类中心,然后使用确定的参数对用户进行聚类,然后对每个聚类用户建立模型并对预测结果进行汇总,得到总电力负荷。为了说明该方法在不同模型下的效果,本文分别建立了XGBoost、CatBoost和LightGBM模型,并对所有用户的总电力负荷进行了预测。从实验结果可以看出,该方法与实际数据趋势一致,预测效果优于直接对全部用户数据建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of User Electricity Consumption based on Adaptive K-Means Algorithm
When predicting the total power load of many users, the computing resources often can’t keep up with the growth rate of the total amount of data, and it is difficult to analyze effectively the data in the actual environment. This paper firstly considers clustering users, then predicts each cluster separately, and finally summarizes the results of each cluster to get the result. This paper firstly performs PCA dimension reduction on user data, and then uses the adaptive K-Means clustering method to determine the number of clusters and the initial cluster center, and then uses the determined parameters to cluster the users, and then builds a model for each cluster user and sum up the forecast results to get the total power load. In order to illustrate the effect of this method under different models, this paper establishes XGBoost, CatBoost and LightGBM models respectively and predicts the total power load of all users. From the experimental results, it can be seen that this method is consistent with the actual data trend, and the prediction effect is better than that of directly modeling all user data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Impacts of JavaScript-Based Encryption of HTML5 Web Storage for Enhanced Privacy A Deep-Learning-Based Optimal Auction for Vehicular Edge Computing Resource Allocation TDH: An Efficient One-stop Enterprise-level Big Data Platform Survey of Research on Named Entity Recognition in Cyber Threat Intelligence A Semantic Segmentation Algorithm for Distributed Energy Data Storage Optimization based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1