非递归高归纳类型的构造

Nicolai Kraus
{"title":"非递归高归纳类型的构造","authors":"Nicolai Kraus","doi":"10.1145/2933575.2933586","DOIUrl":null,"url":null,"abstract":"Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to define equalities (paths). We say that a HIT H is non-recursive if its constructors do not quantify over elements or paths in H. The advantage of non-recursive HITs is that their elimination principles are easier to apply than those of general HITs.It is an open question which classes of HITs can be encoded as non-recursive HITs. One result of this paper is the construction of the propositional truncation via a sequence of approximations, yielding a representation as a non-recursive HIT. Compared to a related construction by van Doorn, ours has the advantage that the connectedness level increases in each step, yielding simplified elimination principles into n-types. As the elimination principle of our sequence has strictly lower requirements, we can then prove a similar result for van Doorn’s construction. We further derive general elimination principles of higher truncations (say, k-truncations) into n-types, generalizing a previous result by Capriotti et al. which considered the case n ≡ k + 1.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Constructions with Non-Recursive Higher Inductive Types\",\"authors\":\"Nicolai Kraus\",\"doi\":\"10.1145/2933575.2933586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to define equalities (paths). We say that a HIT H is non-recursive if its constructors do not quantify over elements or paths in H. The advantage of non-recursive HITs is that their elimination principles are easier to apply than those of general HITs.It is an open question which classes of HITs can be encoded as non-recursive HITs. One result of this paper is the construction of the propositional truncation via a sequence of approximations, yielding a representation as a non-recursive HIT. Compared to a related construction by van Doorn, ours has the advantage that the connectedness level increases in each step, yielding simplified elimination principles into n-types. As the elimination principle of our sequence has strictly lower requirements, we can then prove a similar result for van Doorn’s construction. We further derive general elimination principles of higher truncations (say, k-truncations) into n-types, generalizing a previous result by Capriotti et al. which considered the case n ≡ k + 1.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2933586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2933586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

同伦类型理论中的高归纳类型是归纳类型的有力推广。它们不仅可以有普通的构造函数来定义元素,还可以有更高级的构造函数来定义等式(路径)。如果HIT的构造函数没有对H中的元素或路径进行量化,我们就说HIT H是非递归的。非递归HIT的优点是,它们的消除原则比一般HIT更容易应用。hit的哪些类可以编码为非递归hit是一个悬而未决的问题。本文的一个结果是通过一系列近似构造命题截断,得到一个非递归HIT的表示。与van Doorn的相关构建相比,我们的优点是连通性水平每一步都在增加,将简化的消去原则分解为n种类型。由于我们序列的消去原理具有严格较低的要求,因此我们可以对van Doorn的构造证明类似的结果。我们进一步推导出高截断的一般消去原理(例如,k-截断)为n种类型,推广了Capriotti等人先前考虑n≡k + 1情况的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructions with Non-Recursive Higher Inductive Types
Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to define equalities (paths). We say that a HIT H is non-recursive if its constructors do not quantify over elements or paths in H. The advantage of non-recursive HITs is that their elimination principles are easier to apply than those of general HITs.It is an open question which classes of HITs can be encoded as non-recursive HITs. One result of this paper is the construction of the propositional truncation via a sequence of approximations, yielding a representation as a non-recursive HIT. Compared to a related construction by van Doorn, ours has the advantage that the connectedness level increases in each step, yielding simplified elimination principles into n-types. As the elimination principle of our sequence has strictly lower requirements, we can then prove a similar result for van Doorn’s construction. We further derive general elimination principles of higher truncations (say, k-truncations) into n-types, generalizing a previous result by Capriotti et al. which considered the case n ≡ k + 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative Algebraic Reasoning Differential Refinement Logic* Minimization of Symbolic Tree Automata Graphs of relational structures: restricted types The Complexity of Coverability in ν-Petri Nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1