{"title":"非递归高归纳类型的构造","authors":"Nicolai Kraus","doi":"10.1145/2933575.2933586","DOIUrl":null,"url":null,"abstract":"Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to define equalities (paths). We say that a HIT H is non-recursive if its constructors do not quantify over elements or paths in H. The advantage of non-recursive HITs is that their elimination principles are easier to apply than those of general HITs.It is an open question which classes of HITs can be encoded as non-recursive HITs. One result of this paper is the construction of the propositional truncation via a sequence of approximations, yielding a representation as a non-recursive HIT. Compared to a related construction by van Doorn, ours has the advantage that the connectedness level increases in each step, yielding simplified elimination principles into n-types. As the elimination principle of our sequence has strictly lower requirements, we can then prove a similar result for van Doorn’s construction. We further derive general elimination principles of higher truncations (say, k-truncations) into n-types, generalizing a previous result by Capriotti et al. which considered the case n ≡ k + 1.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Constructions with Non-Recursive Higher Inductive Types\",\"authors\":\"Nicolai Kraus\",\"doi\":\"10.1145/2933575.2933586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to define equalities (paths). We say that a HIT H is non-recursive if its constructors do not quantify over elements or paths in H. The advantage of non-recursive HITs is that their elimination principles are easier to apply than those of general HITs.It is an open question which classes of HITs can be encoded as non-recursive HITs. One result of this paper is the construction of the propositional truncation via a sequence of approximations, yielding a representation as a non-recursive HIT. Compared to a related construction by van Doorn, ours has the advantage that the connectedness level increases in each step, yielding simplified elimination principles into n-types. As the elimination principle of our sequence has strictly lower requirements, we can then prove a similar result for van Doorn’s construction. We further derive general elimination principles of higher truncations (say, k-truncations) into n-types, generalizing a previous result by Capriotti et al. which considered the case n ≡ k + 1.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2933586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2933586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructions with Non-Recursive Higher Inductive Types
Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to define equalities (paths). We say that a HIT H is non-recursive if its constructors do not quantify over elements or paths in H. The advantage of non-recursive HITs is that their elimination principles are easier to apply than those of general HITs.It is an open question which classes of HITs can be encoded as non-recursive HITs. One result of this paper is the construction of the propositional truncation via a sequence of approximations, yielding a representation as a non-recursive HIT. Compared to a related construction by van Doorn, ours has the advantage that the connectedness level increases in each step, yielding simplified elimination principles into n-types. As the elimination principle of our sequence has strictly lower requirements, we can then prove a similar result for van Doorn’s construction. We further derive general elimination principles of higher truncations (say, k-truncations) into n-types, generalizing a previous result by Capriotti et al. which considered the case n ≡ k + 1.