SDN/NFV、机器学习和大数据驱动的5G网络切片

Luong-Vy Le, B. Lin, Li-Ping Tung, Do Sinh
{"title":"SDN/NFV、机器学习和大数据驱动的5G网络切片","authors":"Luong-Vy Le, B. Lin, Li-Ping Tung, Do Sinh","doi":"10.1109/5GWF.2018.8516953","DOIUrl":null,"url":null,"abstract":"5G networks are expected to be able to satisfy a variety of vertical services for mobile users, business demands, and automotive industry. Network slicing is a promising technology for 5G to provide a network as a service (NaaS) for a wide range of services that run on different virtual networks deployed on a shared network infrastructure. Moreover, the SON (self-organizing network) in 5G is expected as a significant evolution to guarantee for full intelligence, automatic, and faster management and optimization. To deal with those requirements, recently, software-defined networking (SDN), network functions virtualization (NFV), big data, and machine learning have been proposed as emerging technologies and the necessary tools for 5G, especially, for network slicing. This study aims to integrate various machine learning (ML) algorithms, big data, SDN, and NFV to build a comprehensive architecture and an experimental framework for the future SONs and network slicing. Finally, based on this framework, we successfully implemented an early state traffic classification and network slicing for mobile broadband traffic applications implemented at Broadband Mobile Lab (BML), National Chiao Tung University (NCTU).","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"SDN/NFV, Machine Learning, and Big Data Driven Network Slicing for 5G\",\"authors\":\"Luong-Vy Le, B. Lin, Li-Ping Tung, Do Sinh\",\"doi\":\"10.1109/5GWF.2018.8516953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5G networks are expected to be able to satisfy a variety of vertical services for mobile users, business demands, and automotive industry. Network slicing is a promising technology for 5G to provide a network as a service (NaaS) for a wide range of services that run on different virtual networks deployed on a shared network infrastructure. Moreover, the SON (self-organizing network) in 5G is expected as a significant evolution to guarantee for full intelligence, automatic, and faster management and optimization. To deal with those requirements, recently, software-defined networking (SDN), network functions virtualization (NFV), big data, and machine learning have been proposed as emerging technologies and the necessary tools for 5G, especially, for network slicing. This study aims to integrate various machine learning (ML) algorithms, big data, SDN, and NFV to build a comprehensive architecture and an experimental framework for the future SONs and network slicing. Finally, based on this framework, we successfully implemented an early state traffic classification and network slicing for mobile broadband traffic applications implemented at Broadband Mobile Lab (BML), National Chiao Tung University (NCTU).\",\"PeriodicalId\":440445,\"journal\":{\"name\":\"2018 IEEE 5G World Forum (5GWF)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5G World Forum (5GWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/5GWF.2018.8516953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8516953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

预计5G网络将能够满足移动用户、商业需求和汽车行业的各种垂直服务。网络切片是5G的一项有前途的技术,可以为在共享网络基础设施上部署的不同虚拟网络上运行的各种服务提供网络即服务(NaaS)。此外,5G时代的SON(自组织网络)有望成为保障全智能、自动化、更快的管理和优化的重大进化。为了满足这些需求,最近,软件定义网络(SDN)、网络功能虚拟化(NFV)、大数据和机器学习被提出作为5G的新兴技术和必要工具,特别是网络切片。本研究旨在整合各种机器学习(ML)算法、大数据、SDN和NFV,为未来的SONs和网络切片构建一个全面的架构和实验框架。最后,基于该框架,我们成功地实现了在国立交通大学宽带移动实验室(BML)实现的移动宽带流量应用的早期状态流量分类和网络切片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SDN/NFV, Machine Learning, and Big Data Driven Network Slicing for 5G
5G networks are expected to be able to satisfy a variety of vertical services for mobile users, business demands, and automotive industry. Network slicing is a promising technology for 5G to provide a network as a service (NaaS) for a wide range of services that run on different virtual networks deployed on a shared network infrastructure. Moreover, the SON (self-organizing network) in 5G is expected as a significant evolution to guarantee for full intelligence, automatic, and faster management and optimization. To deal with those requirements, recently, software-defined networking (SDN), network functions virtualization (NFV), big data, and machine learning have been proposed as emerging technologies and the necessary tools for 5G, especially, for network slicing. This study aims to integrate various machine learning (ML) algorithms, big data, SDN, and NFV to build a comprehensive architecture and an experimental framework for the future SONs and network slicing. Finally, based on this framework, we successfully implemented an early state traffic classification and network slicing for mobile broadband traffic applications implemented at Broadband Mobile Lab (BML), National Chiao Tung University (NCTU).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Inequalities with 5G Internet Light Network Slice CHRONOS: A Cloud based Hybrid RF-Optical Network Over Synchronous Links Using Non-Orthogonal Multiplexing for In-Band Full-Duplex Backhaul for 5G Broadcasting Massive Machine Type Communications over 5G using Lean Protocols and Edge Proxies Adaptive Multiplicity Codes based PIR Protocol for Multi-Cloud Plateform Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1