一个SIP企业网络监控框架

M. Nassar, R. State, O. Festor
{"title":"一个SIP企业网络监控框架","authors":"M. Nassar, R. State, O. Festor","doi":"10.1109/NSS.2010.79","DOIUrl":null,"url":null,"abstract":"In this paper we aim to enable security within SIP enterprise domains by providing monitoring capabilities at three levels: the network traffic, the server logs and the billing records. We propose an anomaly detection approach based on appropriate feature extraction and one-class Support Vector Machines (SVM). We propose methods for anomaly/attack type classification and attack source identification. Our approach is validated through experiments on a controlled test-bed using a customized normal traffic generation model and synthesized attacks. The results show promising performances in terms of accuracy, efficiency and usability.","PeriodicalId":127173,"journal":{"name":"2010 Fourth International Conference on Network and System Security","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Framework for Monitoring SIP Enterprise Networks\",\"authors\":\"M. Nassar, R. State, O. Festor\",\"doi\":\"10.1109/NSS.2010.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we aim to enable security within SIP enterprise domains by providing monitoring capabilities at three levels: the network traffic, the server logs and the billing records. We propose an anomaly detection approach based on appropriate feature extraction and one-class Support Vector Machines (SVM). We propose methods for anomaly/attack type classification and attack source identification. Our approach is validated through experiments on a controlled test-bed using a customized normal traffic generation model and synthesized attacks. The results show promising performances in terms of accuracy, efficiency and usability.\",\"PeriodicalId\":127173,\"journal\":{\"name\":\"2010 Fourth International Conference on Network and System Security\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fourth International Conference on Network and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS.2010.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth International Conference on Network and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS.2010.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们的目标是通过提供三个级别的监视功能来实现SIP企业域中的安全性:网络流量、服务器日志和计费记录。提出了一种基于特征提取和一类支持向量机(SVM)的异常检测方法。提出了异常/攻击类型分类和攻击源识别方法。我们的方法通过使用定制的正常流量生成模型和综合攻击在受控测试台上的实验进行了验证。结果表明,该方法在准确性、效率和可用性方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Monitoring SIP Enterprise Networks
In this paper we aim to enable security within SIP enterprise domains by providing monitoring capabilities at three levels: the network traffic, the server logs and the billing records. We propose an anomaly detection approach based on appropriate feature extraction and one-class Support Vector Machines (SVM). We propose methods for anomaly/attack type classification and attack source identification. Our approach is validated through experiments on a controlled test-bed using a customized normal traffic generation model and synthesized attacks. The results show promising performances in terms of accuracy, efficiency and usability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy-Preserving Protocols for String Matching The PU-Tree: A Partition-Based Uncertain High-Dimensional Indexing Algorithm Ignorant Experts: Computer and Network Security Support from Internet Service Providers Resource Selection from Distributed Semantic Web Stores A Purpose Based Access Control in XML Databases System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1