{"title":"一个SIP企业网络监控框架","authors":"M. Nassar, R. State, O. Festor","doi":"10.1109/NSS.2010.79","DOIUrl":null,"url":null,"abstract":"In this paper we aim to enable security within SIP enterprise domains by providing monitoring capabilities at three levels: the network traffic, the server logs and the billing records. We propose an anomaly detection approach based on appropriate feature extraction and one-class Support Vector Machines (SVM). We propose methods for anomaly/attack type classification and attack source identification. Our approach is validated through experiments on a controlled test-bed using a customized normal traffic generation model and synthesized attacks. The results show promising performances in terms of accuracy, efficiency and usability.","PeriodicalId":127173,"journal":{"name":"2010 Fourth International Conference on Network and System Security","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Framework for Monitoring SIP Enterprise Networks\",\"authors\":\"M. Nassar, R. State, O. Festor\",\"doi\":\"10.1109/NSS.2010.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we aim to enable security within SIP enterprise domains by providing monitoring capabilities at three levels: the network traffic, the server logs and the billing records. We propose an anomaly detection approach based on appropriate feature extraction and one-class Support Vector Machines (SVM). We propose methods for anomaly/attack type classification and attack source identification. Our approach is validated through experiments on a controlled test-bed using a customized normal traffic generation model and synthesized attacks. The results show promising performances in terms of accuracy, efficiency and usability.\",\"PeriodicalId\":127173,\"journal\":{\"name\":\"2010 Fourth International Conference on Network and System Security\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fourth International Conference on Network and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS.2010.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth International Conference on Network and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS.2010.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Framework for Monitoring SIP Enterprise Networks
In this paper we aim to enable security within SIP enterprise domains by providing monitoring capabilities at three levels: the network traffic, the server logs and the billing records. We propose an anomaly detection approach based on appropriate feature extraction and one-class Support Vector Machines (SVM). We propose methods for anomaly/attack type classification and attack source identification. Our approach is validated through experiments on a controlled test-bed using a customized normal traffic generation model and synthesized attacks. The results show promising performances in terms of accuracy, efficiency and usability.