六边形QMF金字塔

Applied Vision Pub Date : 1900-01-01 DOI:10.1364/av.1989.wb2
E. Adelson, Eero P. Simoncelli
{"title":"六边形QMF金字塔","authors":"E. Adelson, Eero P. Simoncelli","doi":"10.1364/av.1989.wb2","DOIUrl":null,"url":null,"abstract":"It is widely recognized that effective image processing and machine vision must involve the use of information at multiple scales, and that models of human vision must be multi-scale as well. The most commonly used image representations are linear transforms, in which an image is decomposed into a sum of elementary basis functions. Besides being well understood, linear transformations in the form of convolutions provide a useful model of some of the early processing in the human visual system.","PeriodicalId":344719,"journal":{"name":"Applied Vision","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hexagonal QMF pyramids\",\"authors\":\"E. Adelson, Eero P. Simoncelli\",\"doi\":\"10.1364/av.1989.wb2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is widely recognized that effective image processing and machine vision must involve the use of information at multiple scales, and that models of human vision must be multi-scale as well. The most commonly used image representations are linear transforms, in which an image is decomposed into a sum of elementary basis functions. Besides being well understood, linear transformations in the form of convolutions provide a useful model of some of the early processing in the human visual system.\",\"PeriodicalId\":344719,\"journal\":{\"name\":\"Applied Vision\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/av.1989.wb2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/av.1989.wb2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人们普遍认为,有效的图像处理和机器视觉必须涉及多尺度信息的使用,人类视觉模型也必须是多尺度的。最常用的图像表示是线性变换,其中图像被分解成初等基函数的和。除了被很好地理解之外,卷积形式的线性变换为人类视觉系统中的一些早期处理提供了一个有用的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hexagonal QMF pyramids
It is widely recognized that effective image processing and machine vision must involve the use of information at multiple scales, and that models of human vision must be multi-scale as well. The most commonly used image representations are linear transforms, in which an image is decomposed into a sum of elementary basis functions. Besides being well understood, linear transformations in the form of convolutions provide a useful model of some of the early processing in the human visual system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open Architecture Television Evaluation of Subjective Image Quality with the Square Root Integral Method Light Source Size and the Stimulus to Vision Image Processing by Intensity-Dependent Spread Calibrating a Linear Visual System by Comparision of Inputs Across Camera/Eye Movements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1