提高CMS中分析工作的效率

T. Ivanov, S. Belforte, M. Wolf, M. Mascheroni, A. P. Yzquierdo, J. Letts, J. Hernández, L. Cristella, D. Ciangottini, J. Balcas, A. Woodard, K. H. Anampa, B. Bockelman, D. Foyo
{"title":"提高CMS中分析工作的效率","authors":"T. Ivanov, S. Belforte, M. Wolf, M. Mascheroni, A. P. Yzquierdo, J. Letts, J. Hernández, L. Cristella, D. Ciangottini, J. Balcas, A. Woodard, K. H. Anampa, B. Bockelman, D. Foyo","doi":"10.1051/epjconf/201921403006","DOIUrl":null,"url":null,"abstract":"Hundreds of physicists analyze data collected by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider using the CMS Remote Analysis Builder and the CMS global pool to exploit the resources of the Worldwide LHC Computing Grid. Efficient use of such an extensive and expensive resource is crucial. At the same time, the CMS collaboration is committed to minimizing time to insight for every scientist, by pushing for fewer possible access restrictions to the full data sample and supports the free choice of applications to run on the computing resources. Supporting such variety of workflows while preserving efficient resource usage poses special challenges. In this paper we report on three complementary approaches adopted in CMS to improve the scheduling efficiency of user analysis jobs: automatic job splitting, automated run time estimates and automated site selection for jobs.","PeriodicalId":106243,"journal":{"name":"Proceedings of International Symposium on Grids & Clouds 2019 — PoS(ISGC2019)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving efficiency of analysis jobs in CMS\",\"authors\":\"T. Ivanov, S. Belforte, M. Wolf, M. Mascheroni, A. P. Yzquierdo, J. Letts, J. Hernández, L. Cristella, D. Ciangottini, J. Balcas, A. Woodard, K. H. Anampa, B. Bockelman, D. Foyo\",\"doi\":\"10.1051/epjconf/201921403006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hundreds of physicists analyze data collected by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider using the CMS Remote Analysis Builder and the CMS global pool to exploit the resources of the Worldwide LHC Computing Grid. Efficient use of such an extensive and expensive resource is crucial. At the same time, the CMS collaboration is committed to minimizing time to insight for every scientist, by pushing for fewer possible access restrictions to the full data sample and supports the free choice of applications to run on the computing resources. Supporting such variety of workflows while preserving efficient resource usage poses special challenges. In this paper we report on three complementary approaches adopted in CMS to improve the scheduling efficiency of user analysis jobs: automatic job splitting, automated run time estimates and automated site selection for jobs.\",\"PeriodicalId\":106243,\"journal\":{\"name\":\"Proceedings of International Symposium on Grids & Clouds 2019 — PoS(ISGC2019)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Symposium on Grids & Clouds 2019 — PoS(ISGC2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjconf/201921403006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Symposium on Grids & Clouds 2019 — PoS(ISGC2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/201921403006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数百名物理学家在大型强子对撞机上使用CMS远程分析生成器和CMS全球池分析紧凑介子螺线管(CMS)实验收集的数据,以利用全球LHC计算网格的资源。有效利用如此广泛和昂贵的资源是至关重要的。与此同时,CMS合作致力于通过减少对完整数据样本的可能访问限制,并支持在计算资源上运行的应用程序的自由选择,最大限度地减少每位科学家获得洞察力的时间。在保持有效的资源使用的同时支持如此多样化的工作流提出了特殊的挑战。在本文中,我们报告了CMS中采用的三种互补方法来提高用户分析作业的调度效率:自动作业拆分,自动运行时间估计和自动作业选址。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving efficiency of analysis jobs in CMS
Hundreds of physicists analyze data collected by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider using the CMS Remote Analysis Builder and the CMS global pool to exploit the resources of the Worldwide LHC Computing Grid. Efficient use of such an extensive and expensive resource is crucial. At the same time, the CMS collaboration is committed to minimizing time to insight for every scientist, by pushing for fewer possible access restrictions to the full data sample and supports the free choice of applications to run on the computing resources. Supporting such variety of workflows while preserving efficient resource usage poses special challenges. In this paper we report on three complementary approaches adopted in CMS to improve the scheduling efficiency of user analysis jobs: automatic job splitting, automated run time estimates and automated site selection for jobs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Resource-saving Job Monitoring System of High Performance Computing using Parent and Child Process Simulation of the cache hit rate for data readout at the Tokyo Tier-2 center Improving efficiency of analysis jobs in CMS A Blueprint of Log Based Monitoring and Diagnosing Framework in Large Distributed Environments Building a minimum viable Security Operations Centre for the modern grid environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1