在目标空间中游戏:多目标优化的耦合逼近器

Harold Soh, Y. Ong, Mohamed Salahuddin, Terence Hung, Bu-Sung Lee
{"title":"在目标空间中游戏:多目标优化的耦合逼近器","authors":"Harold Soh, Y. Ong, Mohamed Salahuddin, Terence Hung, Bu-Sung Lee","doi":"10.1109/MCDM.2007.369109","DOIUrl":null,"url":null,"abstract":"This paper presents a method of integrating computational intelligence with the operators used in evolutionary algorithms. We investigate approximation models of the objective function and its inverse and propose two simple algorithms that use these coupled approximators to optimize multi-objective functions. This method is a break from traditional approach used by standard cross-over and mutation operators, which only explore the objective space through \"near-blind\" manipulation of solutions in the parameter space. Fundamentally, our proposed intelligent operators use learned models of the coupling between the objective space and the parameter space to generate successively better solutions by extrapolating (or interpolating) from known solutions directly in the objective space. We term our implementation of the developed techniques as the coupled approximators evolutionary algorithm (CAEA). Promising empirical results with the DTLZ test suite prompt us to suggest several avenues for future research including combination with local search methods, incorporation of domain-knowledge and more efficient search algorithms.","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Playing in the Objective Space: Coupled Approximators for Multi-Objective Optimization\",\"authors\":\"Harold Soh, Y. Ong, Mohamed Salahuddin, Terence Hung, Bu-Sung Lee\",\"doi\":\"10.1109/MCDM.2007.369109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of integrating computational intelligence with the operators used in evolutionary algorithms. We investigate approximation models of the objective function and its inverse and propose two simple algorithms that use these coupled approximators to optimize multi-objective functions. This method is a break from traditional approach used by standard cross-over and mutation operators, which only explore the objective space through \\\"near-blind\\\" manipulation of solutions in the parameter space. Fundamentally, our proposed intelligent operators use learned models of the coupling between the objective space and the parameter space to generate successively better solutions by extrapolating (or interpolating) from known solutions directly in the objective space. We term our implementation of the developed techniques as the coupled approximators evolutionary algorithm (CAEA). Promising empirical results with the DTLZ test suite prompt us to suggest several avenues for future research including combination with local search methods, incorporation of domain-knowledge and more efficient search algorithms.\",\"PeriodicalId\":306422,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2007.369109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种将计算智能与进化算法中的算子相结合的方法。我们研究了目标函数及其逆函数的近似模型,并提出了两种使用这些耦合近似器来优化多目标函数的简单算法。该方法突破了传统的标准交叉和变异算子仅通过对参数空间解的“近盲”操作来探索目标空间的方法。从根本上说,我们提出的智能算子使用目标空间和参数空间之间耦合的学习模型,通过直接从目标空间中的已知解中外推(或内插)来连续生成更好的解。我们将所开发的技术的实现称为耦合逼近进化算法(CAEA)。DTLZ测试套件的有希望的实证结果促使我们提出了未来研究的几种途径,包括与本地搜索方法的结合,结合领域知识和更有效的搜索算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Playing in the Objective Space: Coupled Approximators for Multi-Objective Optimization
This paper presents a method of integrating computational intelligence with the operators used in evolutionary algorithms. We investigate approximation models of the objective function and its inverse and propose two simple algorithms that use these coupled approximators to optimize multi-objective functions. This method is a break from traditional approach used by standard cross-over and mutation operators, which only explore the objective space through "near-blind" manipulation of solutions in the parameter space. Fundamentally, our proposed intelligent operators use learned models of the coupling between the objective space and the parameter space to generate successively better solutions by extrapolating (or interpolating) from known solutions directly in the objective space. We term our implementation of the developed techniques as the coupled approximators evolutionary algorithm (CAEA). Promising empirical results with the DTLZ test suite prompt us to suggest several avenues for future research including combination with local search methods, incorporation of domain-knowledge and more efficient search algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criteria Set Partitioning for Portfolio Management: A Visual Interactive Method Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example On the Convergence of Multi-Objective Descent Algorithms Prediction of Stock Price Movements Based on Concept Map Information Interactive Utility Maximization in Multi-Objective Vehicle Routing Problems: A "Decision Maker in the Loop"-Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1