{"title":"具有尺度可控制滤波器的尺度等变cnn","authors":"Hanieh Naderi, Leili Goli, S. Kasaei","doi":"10.1109/MVIP49855.2020.9116889","DOIUrl":null,"url":null,"abstract":"Convolution Neural Networks (CNNs), despite being one of the most successful image classification methods, are not robust to most geometric transformations (rotation, isotropic scaling) because of their structural constraints. Recently, scale steerable filters have been proposed to allow scale invariance in CNNs. Although these filters enhance the network performance in scaled image classification tasks, they cannot maintain the scale information across the network. In this paper, this problem is addressed. First, a CNN is built with the usage of scale steerable filters. Then, a scale equivariat network is acquired by adding a feature map to each layer so that the scale-related features are retained across the network. At last, by defining the cost function as the cross entropy, this solution is evaluated and the model parameters are updated. The results show that it improves the perfromance about 2% over other comparable methods of scale equivariance and scale invariance, when run on the FMNIST-scale dataset.","PeriodicalId":255375,"journal":{"name":"2020 International Conference on Machine Vision and Image Processing (MVIP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Scale Equivariant CNNs with Scale Steerable Filters\",\"authors\":\"Hanieh Naderi, Leili Goli, S. Kasaei\",\"doi\":\"10.1109/MVIP49855.2020.9116889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution Neural Networks (CNNs), despite being one of the most successful image classification methods, are not robust to most geometric transformations (rotation, isotropic scaling) because of their structural constraints. Recently, scale steerable filters have been proposed to allow scale invariance in CNNs. Although these filters enhance the network performance in scaled image classification tasks, they cannot maintain the scale information across the network. In this paper, this problem is addressed. First, a CNN is built with the usage of scale steerable filters. Then, a scale equivariat network is acquired by adding a feature map to each layer so that the scale-related features are retained across the network. At last, by defining the cost function as the cross entropy, this solution is evaluated and the model parameters are updated. The results show that it improves the perfromance about 2% over other comparable methods of scale equivariance and scale invariance, when run on the FMNIST-scale dataset.\",\"PeriodicalId\":255375,\"journal\":{\"name\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP49855.2020.9116889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP49855.2020.9116889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scale Equivariant CNNs with Scale Steerable Filters
Convolution Neural Networks (CNNs), despite being one of the most successful image classification methods, are not robust to most geometric transformations (rotation, isotropic scaling) because of their structural constraints. Recently, scale steerable filters have been proposed to allow scale invariance in CNNs. Although these filters enhance the network performance in scaled image classification tasks, they cannot maintain the scale information across the network. In this paper, this problem is addressed. First, a CNN is built with the usage of scale steerable filters. Then, a scale equivariat network is acquired by adding a feature map to each layer so that the scale-related features are retained across the network. At last, by defining the cost function as the cross entropy, this solution is evaluated and the model parameters are updated. The results show that it improves the perfromance about 2% over other comparable methods of scale equivariance and scale invariance, when run on the FMNIST-scale dataset.