氦等离子体辐照金属表面的场电子发射

D. Hwangbo, S. Kajita, N. Ohno, D. Sinelnikov
{"title":"氦等离子体辐照金属表面的场电子发射","authors":"D. Hwangbo, S. Kajita, N. Ohno, D. Sinelnikov","doi":"10.1109/DEIV.2016.7748671","DOIUrl":null,"url":null,"abstract":"Field emission properties on several different metal surfaces irradiated with helium plasmas were measured. Field emission currents from nanostructure, pinhole, and loop-like tantalum surfaces were significantly higher than that from polished tantalum (Ta) surface. Before and after the micro-breakdown, where the current density was under ~1 μA/mm2, field enhancement factor showed slight increase. On the other hand, significant increase of field enhancement factor was measured after breakdown, where the current density increased up to ~100 μA/mm2. In the scanning electron microscope observation, melted cathode spots were detected. The increment of field enhancement factor after the breakdown may be induced by thermo-field electron emission from the melted spots.","PeriodicalId":296641,"journal":{"name":"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)","volume":"115 26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Field electron emission from metal surfaces irradiated with helium plasmas\",\"authors\":\"D. Hwangbo, S. Kajita, N. Ohno, D. Sinelnikov\",\"doi\":\"10.1109/DEIV.2016.7748671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field emission properties on several different metal surfaces irradiated with helium plasmas were measured. Field emission currents from nanostructure, pinhole, and loop-like tantalum surfaces were significantly higher than that from polished tantalum (Ta) surface. Before and after the micro-breakdown, where the current density was under ~1 μA/mm2, field enhancement factor showed slight increase. On the other hand, significant increase of field enhancement factor was measured after breakdown, where the current density increased up to ~100 μA/mm2. In the scanning electron microscope observation, melted cathode spots were detected. The increment of field enhancement factor after the breakdown may be induced by thermo-field electron emission from the melted spots.\",\"PeriodicalId\":296641,\"journal\":{\"name\":\"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)\",\"volume\":\"115 26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEIV.2016.7748671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEIV.2016.7748671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

测量了氦等离子体辐照几种不同金属表面的场发射特性。纳米结构、针孔和环状钽表面的场发射电流明显高于抛光钽(Ta)表面。微击穿前后,电流密度在~1 μA/mm2以下时,场增强因子略有增加。击穿后电场增强系数显著增加,电流密度可达~100 μA/mm2。在扫描电镜下观察到熔化的阴极斑点。击穿后场增强因子的增加可能是由熔化点的热场电子发射引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Field electron emission from metal surfaces irradiated with helium plasmas
Field emission properties on several different metal surfaces irradiated with helium plasmas were measured. Field emission currents from nanostructure, pinhole, and loop-like tantalum surfaces were significantly higher than that from polished tantalum (Ta) surface. Before and after the micro-breakdown, where the current density was under ~1 μA/mm2, field enhancement factor showed slight increase. On the other hand, significant increase of field enhancement factor was measured after breakdown, where the current density increased up to ~100 μA/mm2. In the scanning electron microscope observation, melted cathode spots were detected. The increment of field enhancement factor after the breakdown may be induced by thermo-field electron emission from the melted spots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of the CERN SPS electrostatic septa ion traps Experimental investigation on the dynamic of cathode spot of vacuum arc in external transverse magnetic field Simulation of the hydrogen isotope desorption in the cathode spot of a vacuum arc with a ZrDx cathode Surface discharge detection of external insulation of outdoor vacuum circuit breaker based on ultraviolet imaging Model of the formation of an elementary crater on the cucr cathode of a vacuum interrupters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1