波束形成网络中基于机器学习的NLOS无线电定位

Roman Klus, J. Talvitie, Julia Vinogradova, J. Torsner, M. Valkama
{"title":"波束形成网络中基于机器学习的NLOS无线电定位","authors":"Roman Klus, J. Talvitie, Julia Vinogradova, J. Torsner, M. Valkama","doi":"10.1109/spawc51304.2022.9834010","DOIUrl":null,"url":null,"abstract":"In this paper, we address the challenging problem of radio positioning in non-line-of-sight (NLoS) conditions. To this end, we utilize measurements in the form of time-of-flight and gNodeB angular information in the context of 5G New Radio (NR) networks. Such measurements are processed by artificial neural networks with different snapshot and sequence-processing architectures to track the positions of the terminals. For model training, we consider a crowdsensing data acquisition scheme to effortlessly gather the desired measurements with the synchronized location tags. Realistic ray-tracing based evaluations on the so-called Madrid map at 28 GHz millimeter-wave band are provided, to assess the achievable performance while also varying the amount of uncertainties within the data. The obtained results show that radio positioning is feasible with accuracy in the order of 1 meter, or even below, also in challenging NLOS scenarios if the data and measurement uncertainties are small. The results also show that the sequence processing approach offers superior performance under practical measurement uncertainties.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine Learning Based NLOS Radio Positioning in Beamforming Networks\",\"authors\":\"Roman Klus, J. Talvitie, Julia Vinogradova, J. Torsner, M. Valkama\",\"doi\":\"10.1109/spawc51304.2022.9834010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the challenging problem of radio positioning in non-line-of-sight (NLoS) conditions. To this end, we utilize measurements in the form of time-of-flight and gNodeB angular information in the context of 5G New Radio (NR) networks. Such measurements are processed by artificial neural networks with different snapshot and sequence-processing architectures to track the positions of the terminals. For model training, we consider a crowdsensing data acquisition scheme to effortlessly gather the desired measurements with the synchronized location tags. Realistic ray-tracing based evaluations on the so-called Madrid map at 28 GHz millimeter-wave band are provided, to assess the achievable performance while also varying the amount of uncertainties within the data. The obtained results show that radio positioning is feasible with accuracy in the order of 1 meter, or even below, also in challenging NLOS scenarios if the data and measurement uncertainties are small. The results also show that the sequence processing approach offers superior performance under practical measurement uncertainties.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9834010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9834010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们解决了在非视距(NLoS)条件下无线电定位的挑战性问题。为此,我们在5G新无线电(NR)网络的背景下利用飞行时间和gndeb角度信息形式的测量。这些测量数据由具有不同快照和序列处理架构的人工神经网络处理,以跟踪终端的位置。对于模型训练,我们考虑了一种众感数据采集方案,可以毫不费力地收集具有同步位置标签的所需测量值。提供了基于28 GHz毫米波波段的所谓马德里地图的真实光线追踪评估,以评估可实现的性能,同时也改变了数据中的不确定性。得到的结果表明,如果数据和测量不确定性较小,无线电定位在具有挑战性的NLOS场景下也是可行的,精度在1米左右,甚至更低。结果还表明,在实际测量不确定性下,序列处理方法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Based NLOS Radio Positioning in Beamforming Networks
In this paper, we address the challenging problem of radio positioning in non-line-of-sight (NLoS) conditions. To this end, we utilize measurements in the form of time-of-flight and gNodeB angular information in the context of 5G New Radio (NR) networks. Such measurements are processed by artificial neural networks with different snapshot and sequence-processing architectures to track the positions of the terminals. For model training, we consider a crowdsensing data acquisition scheme to effortlessly gather the desired measurements with the synchronized location tags. Realistic ray-tracing based evaluations on the so-called Madrid map at 28 GHz millimeter-wave band are provided, to assess the achievable performance while also varying the amount of uncertainties within the data. The obtained results show that radio positioning is feasible with accuracy in the order of 1 meter, or even below, also in challenging NLOS scenarios if the data and measurement uncertainties are small. The results also show that the sequence processing approach offers superior performance under practical measurement uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1