GenRL在SBST 2022工具竞赛中

L. L. L. Starace, Andrea Romdhana, S. Martino
{"title":"GenRL在SBST 2022工具竞赛中","authors":"L. L. L. Starace, Andrea Romdhana, S. Martino","doi":"10.1145/3526072.3527533","DOIUrl":null,"url":null,"abstract":"GenRL is a Deep Reinforcement Learning-based tool designed to generate test cases for Lane-Keeping Assist Systems. In this paper, we briefly presents GenRL, and summarize the results of its participation in the Cyber-Physical Systems (CPS) tool competition at SBST 2022.","PeriodicalId":206275,"journal":{"name":"2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GenRL at the SBST 2022 Tool Competition\",\"authors\":\"L. L. L. Starace, Andrea Romdhana, S. Martino\",\"doi\":\"10.1145/3526072.3527533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GenRL is a Deep Reinforcement Learning-based tool designed to generate test cases for Lane-Keeping Assist Systems. In this paper, we briefly presents GenRL, and summarize the results of its participation in the Cyber-Physical Systems (CPS) tool competition at SBST 2022.\",\"PeriodicalId\":206275,\"journal\":{\"name\":\"2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526072.3527533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526072.3527533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

GenRL是一种基于深度强化学习的工具,旨在为车道保持辅助系统生成测试用例。在本文中,我们简要介绍了GenRL,并总结了其参与SBST 2022网络物理系统(CPS)工具竞赛的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GenRL at the SBST 2022 Tool Competition
GenRL is a Deep Reinforcement Learning-based tool designed to generate test cases for Lane-Keeping Assist Systems. In this paper, we briefly presents GenRL, and summarize the results of its participation in the Cyber-Physical Systems (CPS) tool competition at SBST 2022.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kex at the 2022 SBST Tool Competition A Comparative Evaluation on the Quality of Manual and Automatic Test Case Generation Techniques for Scientific Software - a Case Study of a Python Project for Material Science Workflows Towards Run-Time Search for Real-World Multi-Agent Systems EvoMBT at the SBST 2022 Tool Competition UTBot Java at the SBST2022 Tool Competition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1