海报:加密消息应用的ML分类数据收集

Jason Hussey, Ethan Taylor, Kerri Stone, T. Camp
{"title":"海报:加密消息应用的ML分类数据收集","authors":"Jason Hussey, Ethan Taylor, Kerri Stone, T. Camp","doi":"10.1109/ICNP52444.2021.9651948","DOIUrl":null,"url":null,"abstract":"Network traffic classification is used to identify the nature of traffic on a network. Entities capable of monitoring net-work traffic use classification for all manner of reasons, including identification of mobile applications being used on the network. It is possible that the usage of encrypted messaging applications by users on these networks can be detected, betraying elements of their privacy.In this paper, we describe a system that leverages campus network resources to generate real-world data alongside a more curated dataset captured from Android application traffic. We also explore the ability of machine learning (ML) models to accurately classify traffic from these encrypted messaging applications. Understanding what is revealed from network data is important given that the use of these applications is meant to maximize privacy in the first place.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: Data Collection for ML Classification of Encrypted Messaging Applications\",\"authors\":\"Jason Hussey, Ethan Taylor, Kerri Stone, T. Camp\",\"doi\":\"10.1109/ICNP52444.2021.9651948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network traffic classification is used to identify the nature of traffic on a network. Entities capable of monitoring net-work traffic use classification for all manner of reasons, including identification of mobile applications being used on the network. It is possible that the usage of encrypted messaging applications by users on these networks can be detected, betraying elements of their privacy.In this paper, we describe a system that leverages campus network resources to generate real-world data alongside a more curated dataset captured from Android application traffic. We also explore the ability of machine learning (ML) models to accurately classify traffic from these encrypted messaging applications. Understanding what is revealed from network data is important given that the use of these applications is meant to maximize privacy in the first place.\",\"PeriodicalId\":343813,\"journal\":{\"name\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP52444.2021.9651948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络流分类用于识别网络中流量的性质。能够监控网络流量的实体出于各种原因使用分类,包括识别网络上使用的移动应用程序。用户在这些网络上使用的加密消息传递应用程序有可能被检测到,从而泄露了他们的隐私。在本文中,我们描述了一个利用校园网资源生成真实世界数据的系统,以及从Android应用程序流量中捕获的更精心策划的数据集。我们还探索了机器学习(ML)模型准确分类来自这些加密消息传递应用程序的流量的能力。考虑到使用这些应用程序首先是为了最大限度地保护隐私,了解从网络数据中泄露的内容非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster: Data Collection for ML Classification of Encrypted Messaging Applications
Network traffic classification is used to identify the nature of traffic on a network. Entities capable of monitoring net-work traffic use classification for all manner of reasons, including identification of mobile applications being used on the network. It is possible that the usage of encrypted messaging applications by users on these networks can be detected, betraying elements of their privacy.In this paper, we describe a system that leverages campus network resources to generate real-world data alongside a more curated dataset captured from Android application traffic. We also explore the ability of machine learning (ML) models to accurately classify traffic from these encrypted messaging applications. Understanding what is revealed from network data is important given that the use of these applications is meant to maximize privacy in the first place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting WiFi AP for Simultaneous Data Dissemination among WiFi and ZigBee Devices Highway On-Ramp Merging for Mixed Traffic: Recent Advances and Future Trends Generalizable and Interpretable Deep Learning for Network Congestion Prediction DNSonChain: Delegating Privacy-Preserved DNS Resolution to Blockchain ISP Self-Operated BGP Anomaly Detection Based on Weakly Supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1