L. T. Goncalves, J. O. Gaya, Paulo Jorge Lilles Drews Junior, S. Botelho
{"title":"guidenet:使用端到端卷积神经网络的单幅图像去雾","authors":"L. T. Goncalves, J. O. Gaya, Paulo Jorge Lilles Drews Junior, S. Botelho","doi":"10.1109/SIBGRAPI.2018.00017","DOIUrl":null,"url":null,"abstract":"Poor visibility is a common problem when capturing images in participating mediums such as mist or water. The problem of generating a haze-free image based on a hazy one can be described as image dehazing. Previous approaches dealt with this problem using physical models based on priors and simplifications. In this paper, we demonstrate that an end-to-end convolutional neural network is able to learn the dehazing process with no parameters or priors required, resulting in a more generic method. Even though our model is trained entirely with hazy indoor images, we are able to fully restore outdoor images with real haze. Also, we propose an architecture containing the novel Guided Layers, introduced in order to reduce the loss of spatial information while restoring the images. Our method outperforms other machine learning based models, yielding superior results both qualitatively and quantitatively.","PeriodicalId":208985,"journal":{"name":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"GuidedNet: Single Image Dehazing Using an End-to-End Convolutional Neural Network\",\"authors\":\"L. T. Goncalves, J. O. Gaya, Paulo Jorge Lilles Drews Junior, S. Botelho\",\"doi\":\"10.1109/SIBGRAPI.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poor visibility is a common problem when capturing images in participating mediums such as mist or water. The problem of generating a haze-free image based on a hazy one can be described as image dehazing. Previous approaches dealt with this problem using physical models based on priors and simplifications. In this paper, we demonstrate that an end-to-end convolutional neural network is able to learn the dehazing process with no parameters or priors required, resulting in a more generic method. Even though our model is trained entirely with hazy indoor images, we are able to fully restore outdoor images with real haze. Also, we propose an architecture containing the novel Guided Layers, introduced in order to reduce the loss of spatial information while restoring the images. Our method outperforms other machine learning based models, yielding superior results both qualitatively and quantitatively.\",\"PeriodicalId\":208985,\"journal\":{\"name\":\"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GuidedNet: Single Image Dehazing Using an End-to-End Convolutional Neural Network
Poor visibility is a common problem when capturing images in participating mediums such as mist or water. The problem of generating a haze-free image based on a hazy one can be described as image dehazing. Previous approaches dealt with this problem using physical models based on priors and simplifications. In this paper, we demonstrate that an end-to-end convolutional neural network is able to learn the dehazing process with no parameters or priors required, resulting in a more generic method. Even though our model is trained entirely with hazy indoor images, we are able to fully restore outdoor images with real haze. Also, we propose an architecture containing the novel Guided Layers, introduced in order to reduce the loss of spatial information while restoring the images. Our method outperforms other machine learning based models, yielding superior results both qualitatively and quantitatively.