{"title":"一种快速拓扑并行遍历大型数据集的算法","authors":"T. N. Rodrigues","doi":"10.5815/ijitcs.2023.01.01","DOIUrl":null,"url":null,"abstract":"This work presents a parallel implementation of a graph-generating algorithm designed to be straightforwardly adapted to traverse large datasets. This new approach has been validated in a correlated scenario known as the word ladder problem. The new parallel algorithm induces the same topological structure proposed by its serial version and also builds the shortest path between any pair of words to be connected by a ladder of words. The implemented parallelism paradigm is the Multiple Instruction Stream - Multiple Data Stream (MIMD) and the test suite embraces 23-word ladder instances whose intermediate words were extracted from a dictionary of 183,719 words (dataset). The word morph quality (the shortest path between two input words) and the word morph performance (CPU time) were evaluated against a serial implementation of the original algorithm. The proposed parallel algorithm generated the optimal solution for each pair of words tested, that is, the minimum word ladder connecting an initial word to a final word was found. Thus, there was no negative impact on the quality of the solutions comparing them with those obtained through the serial ANG algorithm. However, there was an outstanding improvement considering the CPU time required to build the word ladder solutions. In fact, the time improvement was up to 99.85%, and speedups greater than 2.0X were achieved with the parallel algorithm.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fast Topological Parallel Algorithm for Traversing Large Datasets\",\"authors\":\"T. N. Rodrigues\",\"doi\":\"10.5815/ijitcs.2023.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a parallel implementation of a graph-generating algorithm designed to be straightforwardly adapted to traverse large datasets. This new approach has been validated in a correlated scenario known as the word ladder problem. The new parallel algorithm induces the same topological structure proposed by its serial version and also builds the shortest path between any pair of words to be connected by a ladder of words. The implemented parallelism paradigm is the Multiple Instruction Stream - Multiple Data Stream (MIMD) and the test suite embraces 23-word ladder instances whose intermediate words were extracted from a dictionary of 183,719 words (dataset). The word morph quality (the shortest path between two input words) and the word morph performance (CPU time) were evaluated against a serial implementation of the original algorithm. The proposed parallel algorithm generated the optimal solution for each pair of words tested, that is, the minimum word ladder connecting an initial word to a final word was found. Thus, there was no negative impact on the quality of the solutions comparing them with those obtained through the serial ANG algorithm. However, there was an outstanding improvement considering the CPU time required to build the word ladder solutions. In fact, the time improvement was up to 99.85%, and speedups greater than 2.0X were achieved with the parallel algorithm.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2023.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2023.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fast Topological Parallel Algorithm for Traversing Large Datasets
This work presents a parallel implementation of a graph-generating algorithm designed to be straightforwardly adapted to traverse large datasets. This new approach has been validated in a correlated scenario known as the word ladder problem. The new parallel algorithm induces the same topological structure proposed by its serial version and also builds the shortest path between any pair of words to be connected by a ladder of words. The implemented parallelism paradigm is the Multiple Instruction Stream - Multiple Data Stream (MIMD) and the test suite embraces 23-word ladder instances whose intermediate words were extracted from a dictionary of 183,719 words (dataset). The word morph quality (the shortest path between two input words) and the word morph performance (CPU time) were evaluated against a serial implementation of the original algorithm. The proposed parallel algorithm generated the optimal solution for each pair of words tested, that is, the minimum word ladder connecting an initial word to a final word was found. Thus, there was no negative impact on the quality of the solutions comparing them with those obtained through the serial ANG algorithm. However, there was an outstanding improvement considering the CPU time required to build the word ladder solutions. In fact, the time improvement was up to 99.85%, and speedups greater than 2.0X were achieved with the parallel algorithm.