基于Arcsinh-Compander的大字母概率分布的高效表示

Aviv Adler, Jennifer Tang, Yury Polyanskiy
{"title":"基于Arcsinh-Compander的大字母概率分布的高效表示","authors":"Aviv Adler, Jennifer Tang, Yury Polyanskiy","doi":"10.1109/ISIT50566.2022.9834837","DOIUrl":null,"url":null,"abstract":"A number of engineering and scientific problems require representing and manipulating probability distributions over large alphabets, which we may think of as long vectors of reals summing to 1. In some cases it is required to represent such a vector with only b bits per entry. A natural choice is to partition the interval [0,1] into 2b uniform bins and quantize entries to each bin independently. We show that a minor modification of this procedure – applying an entrywise non-linear function (compander) f(x) prior to quantization – yields an extremely effective quantization method. For example, for b = 8(16) and 105-sized alphabets, the quality of representation improves from a loss (under KL divergence) of 0.5(0.1) bits/entry to 10−4(10−9) bits/entry. Compared to floating point representations, our compander method improves the loss from 10−1(10−6) to 10−4(10−9) bits/entry. These numbers hold for both real-world data (word frequencies in books and DNA k-mer counts) and for synthetic randomly generated distributions. Theoretically, we set up a minimax optimality criterion and show that the compander $f(x) \\propto \\operatorname{ArcSinh} (\\sqrt {(1/2)(K\\log K)x} )$ achieves near-optimal performance, attaining a KL-quantization loss of ≍ 2−2b log2 K for a K-letter alphabet and b →∞. Interestingly, a similar minimax criterion for the quadratic loss on the hypercube shows optimality of the standard uniform quantizer. This suggests that the ArcSinh quantizer is as fundamental for KL-distortion as the uniform quantizer for quadratic distortion.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Representation of Large-Alphabet Probability Distributions via Arcsinh-Compander\",\"authors\":\"Aviv Adler, Jennifer Tang, Yury Polyanskiy\",\"doi\":\"10.1109/ISIT50566.2022.9834837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of engineering and scientific problems require representing and manipulating probability distributions over large alphabets, which we may think of as long vectors of reals summing to 1. In some cases it is required to represent such a vector with only b bits per entry. A natural choice is to partition the interval [0,1] into 2b uniform bins and quantize entries to each bin independently. We show that a minor modification of this procedure – applying an entrywise non-linear function (compander) f(x) prior to quantization – yields an extremely effective quantization method. For example, for b = 8(16) and 105-sized alphabets, the quality of representation improves from a loss (under KL divergence) of 0.5(0.1) bits/entry to 10−4(10−9) bits/entry. Compared to floating point representations, our compander method improves the loss from 10−1(10−6) to 10−4(10−9) bits/entry. These numbers hold for both real-world data (word frequencies in books and DNA k-mer counts) and for synthetic randomly generated distributions. Theoretically, we set up a minimax optimality criterion and show that the compander $f(x) \\\\propto \\\\operatorname{ArcSinh} (\\\\sqrt {(1/2)(K\\\\log K)x} )$ achieves near-optimal performance, attaining a KL-quantization loss of ≍ 2−2b log2 K for a K-letter alphabet and b →∞. Interestingly, a similar minimax criterion for the quadratic loss on the hypercube shows optimality of the standard uniform quantizer. This suggests that the ArcSinh quantizer is as fundamental for KL-distortion as the uniform quantizer for quadratic distortion.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多工程和科学问题需要在大字母上表示和操作概率分布,我们可以将其视为实数之和为1的长向量。在某些情况下,需要表示这样一个每项只有b位的向量。一种自然的选择是将区间[0,1]划分为2b个均匀的bin,并将每个bin的条目独立量化。我们展示了这个过程的一个小修改-在量化之前应用一个入口非线性函数(compander) f(x) -产生了一个非常有效的量化方法。例如,对于b = 8(16)和105大小的字母,表示质量从0.5(0.1)bits/entry的损失(在KL散度下)提高到10−4(10−9)bits/entry。与浮点表示相比,我们的比较器方法将损耗从10−1(10−6)bits/entry提高到10−4(10−9)bits/entry。这些数字既适用于现实世界的数据(书中的词频和DNA k-mer计数),也适用于合成的随机生成的分布。从理论上讲,我们建立了一个极大极小优化准则,并证明了编译器$f(x) \propto \operatorname{ArcSinh} (\sqrt {(1/2)(K\log K)x} )$达到了接近最优的性能,对于K-字母字母表和b→∞,达到了kl -量化损失为−2 2b log2 K。有趣的是,超立方体上二次损失的一个类似的极大极小准则显示了标准均匀量化器的最优性。这表明ArcSinh量化器对于kl失真和均匀量化器对于二次失真一样重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Representation of Large-Alphabet Probability Distributions via Arcsinh-Compander
A number of engineering and scientific problems require representing and manipulating probability distributions over large alphabets, which we may think of as long vectors of reals summing to 1. In some cases it is required to represent such a vector with only b bits per entry. A natural choice is to partition the interval [0,1] into 2b uniform bins and quantize entries to each bin independently. We show that a minor modification of this procedure – applying an entrywise non-linear function (compander) f(x) prior to quantization – yields an extremely effective quantization method. For example, for b = 8(16) and 105-sized alphabets, the quality of representation improves from a loss (under KL divergence) of 0.5(0.1) bits/entry to 10−4(10−9) bits/entry. Compared to floating point representations, our compander method improves the loss from 10−1(10−6) to 10−4(10−9) bits/entry. These numbers hold for both real-world data (word frequencies in books and DNA k-mer counts) and for synthetic randomly generated distributions. Theoretically, we set up a minimax optimality criterion and show that the compander $f(x) \propto \operatorname{ArcSinh} (\sqrt {(1/2)(K\log K)x} )$ achieves near-optimal performance, attaining a KL-quantization loss of ≍ 2−2b log2 K for a K-letter alphabet and b →∞. Interestingly, a similar minimax criterion for the quadratic loss on the hypercube shows optimality of the standard uniform quantizer. This suggests that the ArcSinh quantizer is as fundamental for KL-distortion as the uniform quantizer for quadratic distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1