快速矩阵乘法与逆的误差校正

Daniel S. Roche
{"title":"快速矩阵乘法与逆的误差校正","authors":"Daniel S. Roche","doi":"10.1145/3208976.3209001","DOIUrl":null,"url":null,"abstract":"We present new algorithms to detect and correct errors in the product of two matrices, or the inverse of a matrix, over an arbitrary field. Our algorithms do not require any additional information or encoding other than the original inputs and the erroneous output. Their running time is softly linear in the number of nonzero entries in these matrices when the number of errors is sufficiently small, and they also incorporate fast matrix multiplication so that the cost scales well when the number of errors is large. These algorithms build on the recent result of Gasieniec et al (2017) on correcting matrix products, as well as existing work on verification algorithms, sparse low-rank linear algebra, and sparse polynomial interpolation.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Error Correction in Fast Matrix Multiplication and Inverse\",\"authors\":\"Daniel S. Roche\",\"doi\":\"10.1145/3208976.3209001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new algorithms to detect and correct errors in the product of two matrices, or the inverse of a matrix, over an arbitrary field. Our algorithms do not require any additional information or encoding other than the original inputs and the erroneous output. Their running time is softly linear in the number of nonzero entries in these matrices when the number of errors is sufficiently small, and they also incorporate fast matrix multiplication so that the cost scales well when the number of errors is large. These algorithms build on the recent result of Gasieniec et al (2017) on correcting matrix products, as well as existing work on verification algorithms, sparse low-rank linear algebra, and sparse polynomial interpolation.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种新的算法来检测和纠正任意域上两个矩阵的乘积或矩阵的逆中的错误。除了原始输入和错误输出,我们的算法不需要任何额外的信息或编码。当错误数量足够小时,它们的运行时间在这些矩阵中非零条目的数量上是温和线性的,并且它们还结合了快速的矩阵乘法,以便在错误数量很大时成本可以很好地扩展。这些算法建立在Gasieniec等人(2017)关于修正矩阵乘积的最新结果,以及现有的验证算法、稀疏低秩线性代数和稀疏多项式插值工作的基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error Correction in Fast Matrix Multiplication and Inverse
We present new algorithms to detect and correct errors in the product of two matrices, or the inverse of a matrix, over an arbitrary field. Our algorithms do not require any additional information or encoding other than the original inputs and the erroneous output. Their running time is softly linear in the number of nonzero entries in these matrices when the number of errors is sufficiently small, and they also incorporate fast matrix multiplication so that the cost scales well when the number of errors is large. These algorithms build on the recent result of Gasieniec et al (2017) on correcting matrix products, as well as existing work on verification algorithms, sparse low-rank linear algebra, and sparse polynomial interpolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Constructive Arithmetics in Ore Localizations with Enough Commutativity Extending the GVW Algorithm to Local Ring Comparison of CAD-based Methods for Computation of Rational Function Limits Polynomial Equivalence Problems for Sum of Affine Powers Fast Straightening Algorithm for Bracket Polynomials Based on Tableau Manipulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1