用无限关系模型比较脑结构连通性

Karen Sandø Ambrosen, Tue Herlau, T. Dyrby, Mikkel N. Schmidt, Morten Mørup
{"title":"用无限关系模型比较脑结构连通性","authors":"Karen Sandø Ambrosen, Tue Herlau, T. Dyrby, Mikkel N. Schmidt, Morten Mørup","doi":"10.1109/PRNI.2013.22","DOIUrl":null,"url":null,"abstract":"The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from the same subject versus graphs from different subjects. The inferred structure is most consistent between graphs from the same subject, however, the model is able to predict links in graphs from different subjects on par with results within a subject. The framework proposed can be used as a statistical modeling tool for the identification of structure and quantification of similarity in graphs of brain connectivity in general.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Comparing Structural Brain Connectivity by the Infinite Relational Model\",\"authors\":\"Karen Sandø Ambrosen, Tue Herlau, T. Dyrby, Mikkel N. Schmidt, Morten Mørup\",\"doi\":\"10.1109/PRNI.2013.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from the same subject versus graphs from different subjects. The inferred structure is most consistent between graphs from the same subject, however, the model is able to predict links in graphs from different subjects on par with results within a subject. The framework proposed can be used as a statistical modeling tool for the identification of structure and quantification of similarity in graphs of brain connectivity in general.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

神经影像学对分析大脑连通性的日益关注需要强大而可靠的统计建模工具。我们研究了无限关系模型(IRM)作为识别和比较大脑连接图结构的工具,通过对比其在来自同一受试者和来自不同受试者的图上的表现。来自同一主题的图之间的推断结构是最一致的,但是,该模型能够预测来自不同主题的图中的链接,就像预测一个主题内的结果一样。该框架可以作为一种统计建模工具,用于识别大脑连接图的结构和量化相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing Structural Brain Connectivity by the Infinite Relational Model
The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from the same subject versus graphs from different subjects. The inferred structure is most consistent between graphs from the same subject, however, the model is able to predict links in graphs from different subjects on par with results within a subject. The framework proposed can be used as a statistical modeling tool for the identification of structure and quantification of similarity in graphs of brain connectivity in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two Test Statistics for Cross-Modal Graph Community Significance MVPA Permutation Schemes: Permutation Testing in the Land of Cross-Validation Multivariate Classification of Complex and Multi-echo fMRI Data Discovering Regional Pathological Patterns in Brain MRI Detection of Cognitive Impairment in MS Based on an EEG P300 Paradigm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1