基于模糊逻辑的云QoS扩展

Stefan Frey, Claudia Lüthje, C. Reich, N. Clarke
{"title":"基于模糊逻辑的云QoS扩展","authors":"Stefan Frey, Claudia Lüthje, C. Reich, N. Clarke","doi":"10.1109/IC2E.2014.30","DOIUrl":null,"url":null,"abstract":"One of the biggest advantages of cloud infrastructures is the elasticity. Cloud services are monitored and based on the resource utilization and performance load, they get scaled up or down, by provision or de-provision of cloud resources. The goal is to guarantee the customers an acceptable performance with a minimum of resources. Such Quality of Service (QoS) characteristics are stated in a contract, called Service Level Agreement (SLA) negotiated between customer and provider. The approach of this paper shows that with additional imprecise information (e.g. expected daytime/week- time performance) modeled with fuzzy logic and used in a behavior, load and performance prediction model, the up and down scaling mechanism of a cloud service can be optimized. Evaluation results confirm, that using this approach, SLA violation can be minimized.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Cloud QoS Scaling by Fuzzy Logic\",\"authors\":\"Stefan Frey, Claudia Lüthje, C. Reich, N. Clarke\",\"doi\":\"10.1109/IC2E.2014.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the biggest advantages of cloud infrastructures is the elasticity. Cloud services are monitored and based on the resource utilization and performance load, they get scaled up or down, by provision or de-provision of cloud resources. The goal is to guarantee the customers an acceptable performance with a minimum of resources. Such Quality of Service (QoS) characteristics are stated in a contract, called Service Level Agreement (SLA) negotiated between customer and provider. The approach of this paper shows that with additional imprecise information (e.g. expected daytime/week- time performance) modeled with fuzzy logic and used in a behavior, load and performance prediction model, the up and down scaling mechanism of a cloud service can be optimized. Evaluation results confirm, that using this approach, SLA violation can be minimized.\",\"PeriodicalId\":273902,\"journal\":{\"name\":\"2014 IEEE International Conference on Cloud Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Cloud Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2E.2014.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

云基础设施的最大优势之一是弹性。对云服务进行监控,并基于资源利用率和性能负载,通过提供或取消云资源来扩展或缩小云服务。目标是用最少的资源保证客户获得可接受的性能。这种服务质量(QoS)特征是在客户和提供商之间协商的称为服务水平协议(SLA)的合同中说明的。本文的方法表明,在行为、负载和性能预测模型中使用模糊逻辑建模的附加不精确信息(例如期望的白天/周时间性能),可以优化云服务的上下扩展机制。评估结果证实,使用该方法可以最大限度地减少SLA违规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud QoS Scaling by Fuzzy Logic
One of the biggest advantages of cloud infrastructures is the elasticity. Cloud services are monitored and based on the resource utilization and performance load, they get scaled up or down, by provision or de-provision of cloud resources. The goal is to guarantee the customers an acceptable performance with a minimum of resources. Such Quality of Service (QoS) characteristics are stated in a contract, called Service Level Agreement (SLA) negotiated between customer and provider. The approach of this paper shows that with additional imprecise information (e.g. expected daytime/week- time performance) modeled with fuzzy logic and used in a behavior, load and performance prediction model, the up and down scaling mechanism of a cloud service can be optimized. Evaluation results confirm, that using this approach, SLA violation can be minimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Declarative and Imperative Cloud Application Provisioning Based on TOSCA Splicing MPLS and OpenFlow Tunnels Based on SDN Paradigm CoMoT -- A Platform-as-a-Service for Elasticity in the Cloud A Verification Platform for SDN-Enabled Applications Extraction of Bridges from High Resolution Remote Sensing Image Based on Topology Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1