基于鲁棒时间特征的面部动作单元检测

Prarinya Siritanawan, K. Kotani
{"title":"基于鲁棒时间特征的面部动作单元检测","authors":"Prarinya Siritanawan, K. Kotani","doi":"10.1109/SOCPAR.2015.7492801","DOIUrl":null,"url":null,"abstract":"Typical facial expression recognition system in computer vision field usually learns and translates facial behaviors into emotional states directly based on the training data. Since our face are not limited by a small number of class labels. In order to explain more complex facial expressions, we proposed a novel action unit (AU) detector following the Ekman's Facial Action Coding System (FACS). Our AU detection system utilized the robust temporal features and a new architecture of classification methods based on discriminative Independent Component Analysis (ICA) with whitening process by Eigenspace Method based on Class features (EMC). Therefore we can objectively describe the subtle and complex facial expressions in the same standard in psychology studies. The experimental results show the higher performance of our proposed system comparing to our previous classification methods in the standard dataset.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Facial action units detection by robust temporal features\",\"authors\":\"Prarinya Siritanawan, K. Kotani\",\"doi\":\"10.1109/SOCPAR.2015.7492801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical facial expression recognition system in computer vision field usually learns and translates facial behaviors into emotional states directly based on the training data. Since our face are not limited by a small number of class labels. In order to explain more complex facial expressions, we proposed a novel action unit (AU) detector following the Ekman's Facial Action Coding System (FACS). Our AU detection system utilized the robust temporal features and a new architecture of classification methods based on discriminative Independent Component Analysis (ICA) with whitening process by Eigenspace Method based on Class features (EMC). Therefore we can objectively describe the subtle and complex facial expressions in the same standard in psychology studies. The experimental results show the higher performance of our proposed system comparing to our previous classification methods in the standard dataset.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在计算机视觉领域,典型的面部表情识别系统通常是基于训练数据直接学习并将面部行为转化为情绪状态。因为我们的脸不受少数类标签的限制。为了解释更复杂的面部表情,我们在Ekman面部动作编码系统(FACS)之后提出了一种新的动作单元检测器(AU)。我们的AU检测系统利用了鲁棒的时间特征和一种基于判别独立分量分析(ICA)和基于类特征(EMC)的特征空间白化处理的分类方法的新架构。因此,在心理学研究中,我们可以用同样的标准客观地描述微妙和复杂的面部表情。实验结果表明,本文提出的分类方法在标准数据集上的性能优于以往的分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial action units detection by robust temporal features
Typical facial expression recognition system in computer vision field usually learns and translates facial behaviors into emotional states directly based on the training data. Since our face are not limited by a small number of class labels. In order to explain more complex facial expressions, we proposed a novel action unit (AU) detector following the Ekman's Facial Action Coding System (FACS). Our AU detection system utilized the robust temporal features and a new architecture of classification methods based on discriminative Independent Component Analysis (ICA) with whitening process by Eigenspace Method based on Class features (EMC). Therefore we can objectively describe the subtle and complex facial expressions in the same standard in psychology studies. The experimental results show the higher performance of our proposed system comparing to our previous classification methods in the standard dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1