TinyEdge:为物联网应用提供快速边缘系统定制

Wenzhao Zhang, Yuxuan Zhang, Hongchang Fan, Yi Gao, Wei Dong, Jinfeng Wang
{"title":"TinyEdge:为物联网应用提供快速边缘系统定制","authors":"Wenzhao Zhang, Yuxuan Zhang, Hongchang Fan, Yi Gao, Wei Dong, Jinfeng Wang","doi":"10.1109/SEC50012.2020.00008","DOIUrl":null,"url":null,"abstract":"Customizing and deploying an edge system is a time-consuming and complex task, considering the hardware heterogeneity, third-party software compatibility, diverse performance requirements, etc. In this paper, we present TinyEdge, a holistic system for the rapid customization of edge systems. The key idea of TinyEdge is to use a top-down approach for designing the software and estimating the performance of the customized edge systems under different hardware specifications. Developers select and conFigure modules to specify the critical logic of their interactions, without dealing with the specific hardware or software. Taking the configuration as input, TinyEdge automatically generates the deployment package and estimate the performance after sufficient profiling. TinyEdge provides a unified customization framework for modules to specify their dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its performance using real-world edge systems. Results show that: 1) TinyEdge achieves rapid customization of edge systems, reducing 44.15% of customization time and 67.79% lines of code on average compared with the state-of-the-art edge platforms; 2) TinyEdge builds compact modules and optimizes the latent circular dependency detection and message queuing efficiency; 3) TinyEdge performance estimation has low average absolute error in various settings.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TinyEdge: Enabling Rapid Edge System Customization for IoT Applications\",\"authors\":\"Wenzhao Zhang, Yuxuan Zhang, Hongchang Fan, Yi Gao, Wei Dong, Jinfeng Wang\",\"doi\":\"10.1109/SEC50012.2020.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customizing and deploying an edge system is a time-consuming and complex task, considering the hardware heterogeneity, third-party software compatibility, diverse performance requirements, etc. In this paper, we present TinyEdge, a holistic system for the rapid customization of edge systems. The key idea of TinyEdge is to use a top-down approach for designing the software and estimating the performance of the customized edge systems under different hardware specifications. Developers select and conFigure modules to specify the critical logic of their interactions, without dealing with the specific hardware or software. Taking the configuration as input, TinyEdge automatically generates the deployment package and estimate the performance after sufficient profiling. TinyEdge provides a unified customization framework for modules to specify their dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its performance using real-world edge systems. Results show that: 1) TinyEdge achieves rapid customization of edge systems, reducing 44.15% of customization time and 67.79% lines of code on average compared with the state-of-the-art edge platforms; 2) TinyEdge builds compact modules and optimizes the latent circular dependency detection and message queuing efficiency; 3) TinyEdge performance estimation has low average absolute error in various settings.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑到硬件的异构性、第三方软件的兼容性、不同的性能需求等,定制和部署边缘系统是一项耗时且复杂的任务。在本文中,我们提出了TinyEdge,一个快速定制边缘系统的整体系统。TinyEdge的关键思想是使用自顶向下的方法来设计软件和评估定制边缘系统在不同硬件规格下的性能。开发人员选择和配置模块以指定其交互的关键逻辑,而无需处理特定的硬件或软件。TinyEdge将配置作为输入,自动生成部署包,并在充分分析后对性能进行评估。TinyEdge为模块提供了一个统一的定制框架来指定它们的依赖关系、功能、交互和配置。我们实现了TinyEdge,并使用现实世界的边缘系统评估其性能。结果表明:1)TinyEdge实现了边缘系统的快速定制,与现有边缘平台相比,平均减少了44.15%的定制时间和67.79%的代码行数;2) TinyEdge构建紧凑模块,优化潜在循环依赖检测和消息排队效率;3) TinyEdge性能估计在各种设置下具有较低的平均绝对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TinyEdge: Enabling Rapid Edge System Customization for IoT Applications
Customizing and deploying an edge system is a time-consuming and complex task, considering the hardware heterogeneity, third-party software compatibility, diverse performance requirements, etc. In this paper, we present TinyEdge, a holistic system for the rapid customization of edge systems. The key idea of TinyEdge is to use a top-down approach for designing the software and estimating the performance of the customized edge systems under different hardware specifications. Developers select and conFigure modules to specify the critical logic of their interactions, without dealing with the specific hardware or software. Taking the configuration as input, TinyEdge automatically generates the deployment package and estimate the performance after sufficient profiling. TinyEdge provides a unified customization framework for modules to specify their dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its performance using real-world edge systems. Results show that: 1) TinyEdge achieves rapid customization of edge systems, reducing 44.15% of customization time and 67.79% lines of code on average compared with the state-of-the-art edge platforms; 2) TinyEdge builds compact modules and optimizes the latent circular dependency detection and message queuing efficiency; 3) TinyEdge performance estimation has low average absolute error in various settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position Paper: Towards a Robust Edge-Native Storage System Exploring Decentralized Collaboration in Heterogeneous Edge Training Message from the Program Co-Chairs FareQR: Fast and Reliable Screen-Camera Transfer System for Mobile Devices using QR Code Demo: EdgeVPN.io: Open-source Virtual Private Network for Seamless Edge Computing with Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1