{"title":"分层粒子群优化器","authors":"Stefan Janson, M. Middendorf","doi":"10.1109/CEC.2003.1299745","DOIUrl":null,"url":null,"abstract":"A hierarchical version of the particle swarm optimization method called H-PSO is introduced. In H-PSO the particles are arranged in a dynamic hierarchy that is used to define a neighborhood structure. Depending on the quality of their so far best found solution the particles move up or down the hierarchy so that good particles have a higher influence on the swarm. Moreover, the hierarchy is used to define different search properties for the particles. Several variants of H-PSO are compared experimentally with variants of the standard PSO.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"A hierarchical particle swarm optimizer\",\"authors\":\"Stefan Janson, M. Middendorf\",\"doi\":\"10.1109/CEC.2003.1299745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hierarchical version of the particle swarm optimization method called H-PSO is introduced. In H-PSO the particles are arranged in a dynamic hierarchy that is used to define a neighborhood structure. Depending on the quality of their so far best found solution the particles move up or down the hierarchy so that good particles have a higher influence on the swarm. Moreover, the hierarchy is used to define different search properties for the particles. Several variants of H-PSO are compared experimentally with variants of the standard PSO.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hierarchical version of the particle swarm optimization method called H-PSO is introduced. In H-PSO the particles are arranged in a dynamic hierarchy that is used to define a neighborhood structure. Depending on the quality of their so far best found solution the particles move up or down the hierarchy so that good particles have a higher influence on the swarm. Moreover, the hierarchy is used to define different search properties for the particles. Several variants of H-PSO are compared experimentally with variants of the standard PSO.