基于BI-RADS特征的乳腺x线影像异常的计算机辅助诊断

Saejoon Kim, Sejong Yoon
{"title":"基于BI-RADS特征的乳腺x线影像异常的计算机辅助诊断","authors":"Saejoon Kim, Sejong Yoon","doi":"10.1109/ITAB.2007.4407390","DOIUrl":null,"url":null,"abstract":"In the analysis of digital or digitized mammographic images, a requirement is to learn to separate benign abnormalities from malignant ones. Such an activity could form part of a computer-aided diagnosis (CAD) tool. We present a CAD study of mass and calcification lesions found in digital database of screening mammography (DDSM) using BI-RADS-based features to demonstrate the performance of feature elimination-based support vector machines as the classification technique. It is shown that using only a subset of the available set of features is shown to significantly better classify abnormalities. Furthermore, it is also shown that CAD of same-institutional mammograms produces higher classification accuracy in general compared to that of cross-institutional mammograms.","PeriodicalId":129874,"journal":{"name":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BI-RADS Features-Based Computer-Aided Diagnosis of Abnormalities in Mammographic Images\",\"authors\":\"Saejoon Kim, Sejong Yoon\",\"doi\":\"10.1109/ITAB.2007.4407390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the analysis of digital or digitized mammographic images, a requirement is to learn to separate benign abnormalities from malignant ones. Such an activity could form part of a computer-aided diagnosis (CAD) tool. We present a CAD study of mass and calcification lesions found in digital database of screening mammography (DDSM) using BI-RADS-based features to demonstrate the performance of feature elimination-based support vector machines as the classification technique. It is shown that using only a subset of the available set of features is shown to significantly better classify abnormalities. Furthermore, it is also shown that CAD of same-institutional mammograms produces higher classification accuracy in general compared to that of cross-institutional mammograms.\",\"PeriodicalId\":129874,\"journal\":{\"name\":\"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITAB.2007.4407390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAB.2007.4407390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在分析数字或数字化乳房x线摄影图像时,需要学会区分良性异常和恶性异常。这样的活动可以构成计算机辅助诊断(CAD)工具的一部分。我们使用基于bi - rads的特征对乳房x线摄影(DDSM)数字数据库中发现的肿块和钙化病变进行了CAD研究,以证明基于特征消除的支持向量机作为分类技术的性能。结果表明,仅使用可用特征集的一个子集可以更好地对异常进行分类。此外,研究还表明,与跨机构乳房x光检查相比,同一机构乳房x光检查的CAD通常产生更高的分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BI-RADS Features-Based Computer-Aided Diagnosis of Abnormalities in Mammographic Images
In the analysis of digital or digitized mammographic images, a requirement is to learn to separate benign abnormalities from malignant ones. Such an activity could form part of a computer-aided diagnosis (CAD) tool. We present a CAD study of mass and calcification lesions found in digital database of screening mammography (DDSM) using BI-RADS-based features to demonstrate the performance of feature elimination-based support vector machines as the classification technique. It is shown that using only a subset of the available set of features is shown to significantly better classify abnormalities. Furthermore, it is also shown that CAD of same-institutional mammograms produces higher classification accuracy in general compared to that of cross-institutional mammograms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wearable transducer to monitor respiration in a wireless way The relationship between HRV parameters and stressful driving situation in the real road Enforcing Privacy through Security in Remote Patient Monitoring Ecosystems Innovative Biomedical Information Technologies for Low-cost Healthcare Reflections on Information Technology in Biomedicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1