在GPU环境下高效实现InSAR耗时算法内核

A. Guerriero, V. W. Anelli, A. Pagliara, R. Nutricato, D. Nitti
{"title":"在GPU环境下高效实现InSAR耗时算法内核","authors":"A. Guerriero, V. W. Anelli, A. Pagliara, R. Nutricato, D. Nitti","doi":"10.1109/IGARSS.2015.7326768","DOIUrl":null,"url":null,"abstract":"Satellite remote sensing radar technologies provide powerful tools for geohazard monitoring and risk management at synoptic scale. In particular, advanced Multi-Temporal SAR Interferometric algorithms are capable to detect ground deformations and structural instabilities with millimetric precision, but impose strong requirements in terms of hardware re-sources. Recent advances in GPU computing and programming hold promise for time efficient implementation of imaging algorithms, thus enhancing the development of advanced Emergency Management Services based on Earth Observation technologies. In this study, a preliminary assessment of the potentials of GPU processing is carried out, by comparing CPU (single- and multi-thread) and GPU implementations of InSAR time-consuming algorithm kernels. In particular, it is focused on the fine coregistration of SAR interferometric pairs, a crucial step in the interferogram generation process. Experimental results are discussed.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient implementation of InSAR time-consuming algorithm kernels on GPU environment\",\"authors\":\"A. Guerriero, V. W. Anelli, A. Pagliara, R. Nutricato, D. Nitti\",\"doi\":\"10.1109/IGARSS.2015.7326768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite remote sensing radar technologies provide powerful tools for geohazard monitoring and risk management at synoptic scale. In particular, advanced Multi-Temporal SAR Interferometric algorithms are capable to detect ground deformations and structural instabilities with millimetric precision, but impose strong requirements in terms of hardware re-sources. Recent advances in GPU computing and programming hold promise for time efficient implementation of imaging algorithms, thus enhancing the development of advanced Emergency Management Services based on Earth Observation technologies. In this study, a preliminary assessment of the potentials of GPU processing is carried out, by comparing CPU (single- and multi-thread) and GPU implementations of InSAR time-consuming algorithm kernels. In particular, it is focused on the fine coregistration of SAR interferometric pairs, a crucial step in the interferogram generation process. Experimental results are discussed.\",\"PeriodicalId\":125717,\"journal\":{\"name\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2015.7326768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

卫星遥感雷达技术为天气尺度的地质灾害监测和风险管理提供了强有力的工具。特别是,先进的多时相SAR干涉算法能够以毫米级精度检测地面变形和结构不稳定,但对硬件资源的要求很高。GPU计算和编程的最新进展为成像算法的时间效率实现带来了希望,从而加强了基于地球观测技术的高级应急管理服务的发展。在本研究中,通过比较CPU(单线程和多线程)和GPU实现InSAR耗时算法内核,对GPU处理的潜力进行了初步评估。特别地,它专注于SAR干涉对的精细共配准,这是干涉图生成过程中的关键步骤。对实验结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient implementation of InSAR time-consuming algorithm kernels on GPU environment
Satellite remote sensing radar technologies provide powerful tools for geohazard monitoring and risk management at synoptic scale. In particular, advanced Multi-Temporal SAR Interferometric algorithms are capable to detect ground deformations and structural instabilities with millimetric precision, but impose strong requirements in terms of hardware re-sources. Recent advances in GPU computing and programming hold promise for time efficient implementation of imaging algorithms, thus enhancing the development of advanced Emergency Management Services based on Earth Observation technologies. In this study, a preliminary assessment of the potentials of GPU processing is carried out, by comparing CPU (single- and multi-thread) and GPU implementations of InSAR time-consuming algorithm kernels. In particular, it is focused on the fine coregistration of SAR interferometric pairs, a crucial step in the interferogram generation process. Experimental results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1