Ibraheem Shayea, Lida Kouhalvandi, M. Ergen, A. Alhammadi
{"title":"基于个体权函数的5G及以后网络动态移动性鲁棒性优化","authors":"Ibraheem Shayea, Lida Kouhalvandi, M. Ergen, A. Alhammadi","doi":"10.1109/wpmc52694.2021.9700420","DOIUrl":null,"url":null,"abstract":"In this paper, a dynamic-mobility robustness optimization (D-MRO) technique has been developed to dynamically estimate handover control parameters (HCPs) settings for each user individually. This technique is operating based on the weight function (WF), which operates as a function of user equipment’s (UE’s) signal to-interference-plus-noise-ratio (SINR), cells’ load, and UE’s mobility speed. To validate the compatibility of the proposed technique over various mobility conditions in the fifth generation (5G) network, the performance of the analytical HCPs estimation technique is compared with other mobility robustness optimization (MRO) techniques from the literature based on a simulation study. The simulation is executed by utilizing MATLAB software, and results are analyzed in terms of handover probability (HOP), handover ping-pong probability (HPPP), and radio link failure (RLF). Simulation results show that the proposed optimization technique contributes significantly in addressing the problem of the existing MRO solutions at various mobile speed scenarios and the presented method outperforms the nominated performances.","PeriodicalId":299827,"journal":{"name":"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Mobility Robustness Optimization Based on Individual Weight Function for 5G Networks and Beyond\",\"authors\":\"Ibraheem Shayea, Lida Kouhalvandi, M. Ergen, A. Alhammadi\",\"doi\":\"10.1109/wpmc52694.2021.9700420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a dynamic-mobility robustness optimization (D-MRO) technique has been developed to dynamically estimate handover control parameters (HCPs) settings for each user individually. This technique is operating based on the weight function (WF), which operates as a function of user equipment’s (UE’s) signal to-interference-plus-noise-ratio (SINR), cells’ load, and UE’s mobility speed. To validate the compatibility of the proposed technique over various mobility conditions in the fifth generation (5G) network, the performance of the analytical HCPs estimation technique is compared with other mobility robustness optimization (MRO) techniques from the literature based on a simulation study. The simulation is executed by utilizing MATLAB software, and results are analyzed in terms of handover probability (HOP), handover ping-pong probability (HPPP), and radio link failure (RLF). Simulation results show that the proposed optimization technique contributes significantly in addressing the problem of the existing MRO solutions at various mobile speed scenarios and the presented method outperforms the nominated performances.\",\"PeriodicalId\":299827,\"journal\":{\"name\":\"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wpmc52694.2021.9700420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wpmc52694.2021.9700420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Mobility Robustness Optimization Based on Individual Weight Function for 5G Networks and Beyond
In this paper, a dynamic-mobility robustness optimization (D-MRO) technique has been developed to dynamically estimate handover control parameters (HCPs) settings for each user individually. This technique is operating based on the weight function (WF), which operates as a function of user equipment’s (UE’s) signal to-interference-plus-noise-ratio (SINR), cells’ load, and UE’s mobility speed. To validate the compatibility of the proposed technique over various mobility conditions in the fifth generation (5G) network, the performance of the analytical HCPs estimation technique is compared with other mobility robustness optimization (MRO) techniques from the literature based on a simulation study. The simulation is executed by utilizing MATLAB software, and results are analyzed in terms of handover probability (HOP), handover ping-pong probability (HPPP), and radio link failure (RLF). Simulation results show that the proposed optimization technique contributes significantly in addressing the problem of the existing MRO solutions at various mobile speed scenarios and the presented method outperforms the nominated performances.