利用塑料废料开发3D打印原料

Alaeddine Oussai, Z. Bártfai, L. Kátai
{"title":"利用塑料废料开发3D打印原料","authors":"Alaeddine Oussai, Z. Bártfai, L. Kátai","doi":"10.31410/eraz.2019.177","DOIUrl":null,"url":null,"abstract":"Fused Deposition Modelling (FDM) is the most common 3D printing technology. An object formed through continuous layering until completion is known as an additive process while other processes with different methods are also relevant. In this paper, mechanical properties were analysed using two distinct kinds of printed polyethylene terephthalate (PET) as tensile test specimens. The materials used consist of recycled PET and virgin PET. An assessment of all the forty test pieces of both kinds of PET was undertaken. A comparison of the test samples’ tensile strength values, difference in stress-strain curves, and elongation at break was also carried out. The reasoning behind the fracturing of test pieces that printed with different settings is presented in part by the depiction of the fractured specimens following the tensile test. An optimal route was revealed to be 3D printing with recycled PET, as per the mechanical testing. The hardness of the recycled filament decreased to 6%, while the tensile strength and shear strength increased to 14.7 and 2.8%, respectively. Nonetheless, no changes occurred to the tensile modulus elasticity. Despite notable differences being observed in the results of the recycled PET filament, no substantial differences were found prior or post-recycling in the mechanical properties of the PET filament. In conclusion, the demand for improved recycled 3D printing filament technologies is heightened due to the comparable mechanical features of the specimens of both the 3D printed recycled and virgin materials. With tensile strength figures reaching as high as 43.15MPa at Recycled PET and 3.12% being the greatest elongation at 40% Recycled PET, 100% Recycled is the ideal printing setting.","PeriodicalId":104429,"journal":{"name":"Hungarian Agricultural Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Development of 3D printing raw materials from plastic waste\",\"authors\":\"Alaeddine Oussai, Z. Bártfai, L. Kátai\",\"doi\":\"10.31410/eraz.2019.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fused Deposition Modelling (FDM) is the most common 3D printing technology. An object formed through continuous layering until completion is known as an additive process while other processes with different methods are also relevant. In this paper, mechanical properties were analysed using two distinct kinds of printed polyethylene terephthalate (PET) as tensile test specimens. The materials used consist of recycled PET and virgin PET. An assessment of all the forty test pieces of both kinds of PET was undertaken. A comparison of the test samples’ tensile strength values, difference in stress-strain curves, and elongation at break was also carried out. The reasoning behind the fracturing of test pieces that printed with different settings is presented in part by the depiction of the fractured specimens following the tensile test. An optimal route was revealed to be 3D printing with recycled PET, as per the mechanical testing. The hardness of the recycled filament decreased to 6%, while the tensile strength and shear strength increased to 14.7 and 2.8%, respectively. Nonetheless, no changes occurred to the tensile modulus elasticity. Despite notable differences being observed in the results of the recycled PET filament, no substantial differences were found prior or post-recycling in the mechanical properties of the PET filament. In conclusion, the demand for improved recycled 3D printing filament technologies is heightened due to the comparable mechanical features of the specimens of both the 3D printed recycled and virgin materials. With tensile strength figures reaching as high as 43.15MPa at Recycled PET and 3.12% being the greatest elongation at 40% Recycled PET, 100% Recycled is the ideal printing setting.\",\"PeriodicalId\":104429,\"journal\":{\"name\":\"Hungarian Agricultural Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hungarian Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31410/eraz.2019.177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31410/eraz.2019.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

熔融沉积建模(FDM)是最常见的3D打印技术。通过连续分层直到完成形成的对象称为加性过程,而其他方法不同的过程也相关。本文以两种不同类型的印刷聚对苯二甲酸乙二醇酯(PET)作为拉伸试样,对其力学性能进行了分析。使用的材料包括回收的PET和原生PET。对两种PET的所有40个试样进行了评估。对比了试样的抗拉强度值、应力-应变曲线差值和断裂伸长率。以不同设置打印的试件破裂背后的原因部分是由拉伸试验后断裂试件的描述呈现的。根据机械测试,最佳路线是使用回收PET进行3D打印。再生长丝的硬度降低到6%,抗拉强度和抗剪强度分别提高到14.7%和2.8%。然而,拉伸弹性模量没有发生变化。尽管在回收PET长丝的结果中观察到显着差异,但在PET长丝的机械性能回收前后没有发现实质性差异。总之,由于3D打印回收材料和原始材料的样品具有可比较的机械特性,因此对改进的再生3D打印长丝技术的需求增加。再生PET的拉伸强度高达43.15MPa, 40%再生PET的最大伸长率为3.12%,100%再生PET是理想的印刷设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of 3D printing raw materials from plastic waste
Fused Deposition Modelling (FDM) is the most common 3D printing technology. An object formed through continuous layering until completion is known as an additive process while other processes with different methods are also relevant. In this paper, mechanical properties were analysed using two distinct kinds of printed polyethylene terephthalate (PET) as tensile test specimens. The materials used consist of recycled PET and virgin PET. An assessment of all the forty test pieces of both kinds of PET was undertaken. A comparison of the test samples’ tensile strength values, difference in stress-strain curves, and elongation at break was also carried out. The reasoning behind the fracturing of test pieces that printed with different settings is presented in part by the depiction of the fractured specimens following the tensile test. An optimal route was revealed to be 3D printing with recycled PET, as per the mechanical testing. The hardness of the recycled filament decreased to 6%, while the tensile strength and shear strength increased to 14.7 and 2.8%, respectively. Nonetheless, no changes occurred to the tensile modulus elasticity. Despite notable differences being observed in the results of the recycled PET filament, no substantial differences were found prior or post-recycling in the mechanical properties of the PET filament. In conclusion, the demand for improved recycled 3D printing filament technologies is heightened due to the comparable mechanical features of the specimens of both the 3D printed recycled and virgin materials. With tensile strength figures reaching as high as 43.15MPa at Recycled PET and 3.12% being the greatest elongation at 40% Recycled PET, 100% Recycled is the ideal printing setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
期刊最新文献
Development of 3D printing raw materials from plastic waste The effect of particle shape on the angle of repose test based calibration of discrete element models Utilizing machine learning techniques to process customer claims automatically Possibilities of Using Robots in Agriculture Subsidy and its effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1