基于概率主题模型的高分辨率遥感影像城市道路提取实验研究

Wenbin Yi, Yunhao Chen, Hong Tang, L. Deng
{"title":"基于概率主题模型的高分辨率遥感影像城市道路提取实验研究","authors":"Wenbin Yi, Yunhao Chen, Hong Tang, L. Deng","doi":"10.1109/IGARSS.2010.5650966","DOIUrl":null,"url":null,"abstract":"We introduce a semi-automated algorithm to extract urban road from high-resolution RS image using the Probabilistic Topic Models. First of all, an image collection is generated from a high-resolution image by partitioning it into densely overlapped sub-images. The image collection is divided into two subsets, i.e., training images and testing images. The training images are used to estimate the number of topics, and to learn topic models. The training images are densely overlapped and are folded in using the learned topics to make sure that every pixel in each document is allocated to a topic label. Therefore, every pixel in the initial large image might be allocated multiple topic labels since it might belong to multiple sub-images. By selecting the road segments samples, several cluster centers will be assumed as labels of road objects. The semantic information can improve the extraction accuracy of road segments. The central lines of the road segments will be extracted basing on some image filter algorithms and Hough transform. Experimental results over EROS-B images show that road segments can be effectively detected by the proposed algorithm and an initial road network can be formed","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Experimental research on urban road extraction from high-resolution RS images using Probabilistic Topic Models\",\"authors\":\"Wenbin Yi, Yunhao Chen, Hong Tang, L. Deng\",\"doi\":\"10.1109/IGARSS.2010.5650966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a semi-automated algorithm to extract urban road from high-resolution RS image using the Probabilistic Topic Models. First of all, an image collection is generated from a high-resolution image by partitioning it into densely overlapped sub-images. The image collection is divided into two subsets, i.e., training images and testing images. The training images are used to estimate the number of topics, and to learn topic models. The training images are densely overlapped and are folded in using the learned topics to make sure that every pixel in each document is allocated to a topic label. Therefore, every pixel in the initial large image might be allocated multiple topic labels since it might belong to multiple sub-images. By selecting the road segments samples, several cluster centers will be assumed as labels of road objects. The semantic information can improve the extraction accuracy of road segments. The central lines of the road segments will be extracted basing on some image filter algorithms and Hough transform. Experimental results over EROS-B images show that road segments can be effectively detected by the proposed algorithm and an initial road network can be formed\",\"PeriodicalId\":406785,\"journal\":{\"name\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2010.5650966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5650966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了一种利用概率主题模型从高分辨率遥感图像中提取城市道路的半自动算法。首先,将高分辨率图像划分为密集重叠的子图像,生成图像集合。图像集合分为两个子集,即训练图像和测试图像。训练图像用于估计主题数量,并学习主题模型。训练图像密集重叠,并使用学习主题进行折叠,以确保每个文档中的每个像素都分配给主题标签。因此,初始大图像中的每个像素可能属于多个子图像,因此可能会分配多个主题标签。通过选择道路段样本,假设几个聚类中心作为道路对象的标签。语义信息可以提高道路段的提取精度。基于图像滤波算法和霍夫变换,提取道路段的中心线。在EROS-B图像上的实验结果表明,该算法可以有效地检测道路段,并形成初始路网
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental research on urban road extraction from high-resolution RS images using Probabilistic Topic Models
We introduce a semi-automated algorithm to extract urban road from high-resolution RS image using the Probabilistic Topic Models. First of all, an image collection is generated from a high-resolution image by partitioning it into densely overlapped sub-images. The image collection is divided into two subsets, i.e., training images and testing images. The training images are used to estimate the number of topics, and to learn topic models. The training images are densely overlapped and are folded in using the learned topics to make sure that every pixel in each document is allocated to a topic label. Therefore, every pixel in the initial large image might be allocated multiple topic labels since it might belong to multiple sub-images. By selecting the road segments samples, several cluster centers will be assumed as labels of road objects. The semantic information can improve the extraction accuracy of road segments. The central lines of the road segments will be extracted basing on some image filter algorithms and Hough transform. Experimental results over EROS-B images show that road segments can be effectively detected by the proposed algorithm and an initial road network can be formed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One micron laser technology advancements at GSFC Progress in the validation of dual-wavelength aerosol retrieval models via airborne high spectral resolution lidar data The microasar experiment on CASIE-09 A method to estimate Snow Water Equivalent using multi-angle X-band radar observations Detection and correction of spectral and spatial misregistrations for hyperspectral data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1