硬盘驱动器的状态依赖M/G/1/K队列模型

Mingzhou Xie, L. Xia, Jun Xu
{"title":"硬盘驱动器的状态依赖M/G/1/K队列模型","authors":"Mingzhou Xie, L. Xia, Jun Xu","doi":"10.1109/COASE.2017.8256206","DOIUrl":null,"url":null,"abstract":"Storage system is the infrastructure of big data. Performance analysis of hard disk drive (HDD) plays a fundamental role to improve the efficiency of storage system. State-dependent M/G/1/K queue is used to model HDD, but it does not have a closed-form solution in the literature. In this paper, we use an M/G/1/K with state-dependent service time to formulate the dynamics of disk random access, where the service time depends on the queue length (batch size of requests determined by the queue length). A numerical computation approach is then proposed to compute the steady state distribution of this queuing model. By utilizing the block structure of transition probability matrix, we further develop an approach to speed up the computation, which can reduce the model complexity from O(K6) to O(K3). Finally, we apply this approach to a case study of hard disks of Western Digital Corp. It demonstrates the efficiency of our approach and gains useful insights for the optimization of storage system.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"State-dependent M/G/1/K queuing model for hard disk drives\",\"authors\":\"Mingzhou Xie, L. Xia, Jun Xu\",\"doi\":\"10.1109/COASE.2017.8256206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Storage system is the infrastructure of big data. Performance analysis of hard disk drive (HDD) plays a fundamental role to improve the efficiency of storage system. State-dependent M/G/1/K queue is used to model HDD, but it does not have a closed-form solution in the literature. In this paper, we use an M/G/1/K with state-dependent service time to formulate the dynamics of disk random access, where the service time depends on the queue length (batch size of requests determined by the queue length). A numerical computation approach is then proposed to compute the steady state distribution of this queuing model. By utilizing the block structure of transition probability matrix, we further develop an approach to speed up the computation, which can reduce the model complexity from O(K6) to O(K3). Finally, we apply this approach to a case study of hard disks of Western Digital Corp. It demonstrates the efficiency of our approach and gains useful insights for the optimization of storage system.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

存储系统是大数据的基础设施。硬盘性能分析是提高存储系统工作效率的基础。状态依赖M/G/1/K队列用于HDD建模,但在文献中没有一个封闭形式的解决方案。在本文中,我们使用状态依赖服务时间的M/G/1/K来表述磁盘随机访问的动态,其中服务时间取决于队列长度(请求的批量大小由队列长度决定)。然后提出了一种数值计算方法来计算该排队模型的稳态分布。利用转移概率矩阵的块结构,进一步开发了一种加快计算速度的方法,将模型复杂度从0 (K6)降低到O(K3)。最后,以西部数据公司的硬盘为例,验证了该方法的有效性,为存储系统的优化提供了有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State-dependent M/G/1/K queuing model for hard disk drives
Storage system is the infrastructure of big data. Performance analysis of hard disk drive (HDD) plays a fundamental role to improve the efficiency of storage system. State-dependent M/G/1/K queue is used to model HDD, but it does not have a closed-form solution in the literature. In this paper, we use an M/G/1/K with state-dependent service time to formulate the dynamics of disk random access, where the service time depends on the queue length (batch size of requests determined by the queue length). A numerical computation approach is then proposed to compute the steady state distribution of this queuing model. By utilizing the block structure of transition probability matrix, we further develop an approach to speed up the computation, which can reduce the model complexity from O(K6) to O(K3). Finally, we apply this approach to a case study of hard disks of Western Digital Corp. It demonstrates the efficiency of our approach and gains useful insights for the optimization of storage system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on performance evaluation and status-based decision for cyber-physical production systems Optimization of deterministic timed weighted marked graphs An optimization-simulation approach for long term care structure assignment problem for elderly people Stochastic simulation of clinical pathways from raw health databases A circuit-breaker use-case operated by a humanoid in aircraft manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1