利用记忆和软判决信息对相关衰落信道进行信道优化量化

Shervin Shahidi, F. Alajaji, T. Linder
{"title":"利用记忆和软判决信息对相关衰落信道进行信道优化量化","authors":"Shervin Shahidi, F. Alajaji, T. Linder","doi":"10.1109/CWIT.2011.5872125","DOIUrl":null,"url":null,"abstract":"A channel optimized vector quantizer (COVQ) scheme is studied and evaluated for a recently introduced discrete binary-input 2q-ary-output channel with Markovian ergodic noise based on a finite queue. This channel can effectively model binary-modulated correlated Rayleigh fading channels with output quantization of resolution q. It is shown that the system can successfully exploit the channel's memory and soft-decision information. Signal-to-distortion gains of up to 2.3 dB are obtained for only 2 bits of soft-decision quantization over COVQ schemes designed for a hard-decision (q = 1) demodulated channel. Furthermore, gains as high as 4.6 dB can be achieved for a highly correlated channel, in comparison with systems designed for the ideally interleaved (memoryless) channel. Finally, the queue-based noise model is validated as an effective approximation of correlated fading channels by testing a COVQ trained using this model over the Rayleigh fading channel.","PeriodicalId":250626,"journal":{"name":"2011 12th Canadian Workshop on Information Theory","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploiting memory and soft-decision information in channel optimized quantization for correlated fading channels\",\"authors\":\"Shervin Shahidi, F. Alajaji, T. Linder\",\"doi\":\"10.1109/CWIT.2011.5872125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A channel optimized vector quantizer (COVQ) scheme is studied and evaluated for a recently introduced discrete binary-input 2q-ary-output channel with Markovian ergodic noise based on a finite queue. This channel can effectively model binary-modulated correlated Rayleigh fading channels with output quantization of resolution q. It is shown that the system can successfully exploit the channel's memory and soft-decision information. Signal-to-distortion gains of up to 2.3 dB are obtained for only 2 bits of soft-decision quantization over COVQ schemes designed for a hard-decision (q = 1) demodulated channel. Furthermore, gains as high as 4.6 dB can be achieved for a highly correlated channel, in comparison with systems designed for the ideally interleaved (memoryless) channel. Finally, the queue-based noise model is validated as an effective approximation of correlated fading channels by testing a COVQ trained using this model over the Rayleigh fading channel.\",\"PeriodicalId\":250626,\"journal\":{\"name\":\"2011 12th Canadian Workshop on Information Theory\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th Canadian Workshop on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2011.5872125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2011.5872125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了一种基于有限队列的具有马尔可夫遍历噪声的离散二值输入2q-输出信道的信道优化矢量量化(COVQ)方案。该信道可以有效地模拟二进制调制相关瑞利衰落信道,输出量化的分辨率为q。实验表明,该系统可以成功地利用信道的内存和软判决信息。在针对硬判决(q = 1)解调信道设计的COVQ方案上,仅2位软判决量化就可获得高达2.3 dB的信号失真增益。此外,与设计用于理想交错(无存储器)信道的系统相比,高相关信道的增益可高达4.6 dB。最后,通过在瑞利衰落信道上测试使用该模型训练的COVQ,验证了基于队列的噪声模型是相关衰落信道的有效逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting memory and soft-decision information in channel optimized quantization for correlated fading channels
A channel optimized vector quantizer (COVQ) scheme is studied and evaluated for a recently introduced discrete binary-input 2q-ary-output channel with Markovian ergodic noise based on a finite queue. This channel can effectively model binary-modulated correlated Rayleigh fading channels with output quantization of resolution q. It is shown that the system can successfully exploit the channel's memory and soft-decision information. Signal-to-distortion gains of up to 2.3 dB are obtained for only 2 bits of soft-decision quantization over COVQ schemes designed for a hard-decision (q = 1) demodulated channel. Furthermore, gains as high as 4.6 dB can be achieved for a highly correlated channel, in comparison with systems designed for the ideally interleaved (memoryless) channel. Finally, the queue-based noise model is validated as an effective approximation of correlated fading channels by testing a COVQ trained using this model over the Rayleigh fading channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sparse space codes for multi-antenna systems Average outage and non-outage duration of selective decode-and-forward relaying Complexity-efficient detection for MIMO relay networks DMT analysis of multi-hop coherent FSO communication over atmospheric channels Optimizing wireless network resource allocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1