基于参考的网络搜索评估模型:理解和衡量有限理性用户的体验

Nuo Chen, Jiqun Liu, Tetsuya Sakai
{"title":"基于参考的网络搜索评估模型:理解和衡量有限理性用户的体验","authors":"Nuo Chen, Jiqun Liu, Tetsuya Sakai","doi":"10.1145/3543507.3583551","DOIUrl":null,"url":null,"abstract":"Previous researches demonstrate that users’ actions in search interaction are associated with relative gains and losses to reference points, known as the reference dependence effect. However, this widely confirmed effect is not represented in most user models underpinning existing search evaluation metrics. In this study, we propose a new evaluation metric framework, namely Reference Dependent Metric (ReDeM), for assessing query-level search by incorporating the effect of reference dependence into the modelling of user search behavior. To test the overall effectiveness of the proposed framework, (1) we evaluate the performance, in terms of correlation with user satisfaction, of ReDeMs built upon different reference points against that of the widely-used metrics on three search datasets; (2) we examine the performance of ReDeMs under different task states, like task difficulty and task urgency; and (3) we analyze the statistical reliability of ReDeMs in terms of discriminative power. Experimental results indicate that: (1) ReDeMs integrated with a proper reference point achieve better correlations with user satisfaction than most of the existing metrics, like Discounted Cumulative Gain (DCG) and Rank-Biased Precision (RBP), even though their parameters have already been well-tuned; (2) ReDeMs reach relatively better performance compared to existing metrics when the task triggers a high-level cognitive load; (3) the discriminative power of ReDeMs is far stronger than Expected Reciprocal Rank (ERR), slightly stronger than Precision and similar to DCG, RBP and INST. To our knowledge, this study is the first to explicitly incorporate the reference dependence effect into the user browsing model and offline evaluation metrics. Our work illustrates a promising approach to leveraging the insights about user biases from cognitive psychology in better evaluating user search experience and enhancing user models.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Reference-Dependent Model for Web Search Evaluation: Understanding and Measuring the Experience of Boundedly Rational Users\",\"authors\":\"Nuo Chen, Jiqun Liu, Tetsuya Sakai\",\"doi\":\"10.1145/3543507.3583551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous researches demonstrate that users’ actions in search interaction are associated with relative gains and losses to reference points, known as the reference dependence effect. However, this widely confirmed effect is not represented in most user models underpinning existing search evaluation metrics. In this study, we propose a new evaluation metric framework, namely Reference Dependent Metric (ReDeM), for assessing query-level search by incorporating the effect of reference dependence into the modelling of user search behavior. To test the overall effectiveness of the proposed framework, (1) we evaluate the performance, in terms of correlation with user satisfaction, of ReDeMs built upon different reference points against that of the widely-used metrics on three search datasets; (2) we examine the performance of ReDeMs under different task states, like task difficulty and task urgency; and (3) we analyze the statistical reliability of ReDeMs in terms of discriminative power. Experimental results indicate that: (1) ReDeMs integrated with a proper reference point achieve better correlations with user satisfaction than most of the existing metrics, like Discounted Cumulative Gain (DCG) and Rank-Biased Precision (RBP), even though their parameters have already been well-tuned; (2) ReDeMs reach relatively better performance compared to existing metrics when the task triggers a high-level cognitive load; (3) the discriminative power of ReDeMs is far stronger than Expected Reciprocal Rank (ERR), slightly stronger than Precision and similar to DCG, RBP and INST. To our knowledge, this study is the first to explicitly incorporate the reference dependence effect into the user browsing model and offline evaluation metrics. Our work illustrates a promising approach to leveraging the insights about user biases from cognitive psychology in better evaluating user search experience and enhancing user models.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

已有研究表明,用户在搜索交互中的行为与参考点的相对得失有关,称为参考依赖效应。然而,这种被广泛证实的效果并没有体现在大多数支持现有搜索评估指标的用户模型中。在这项研究中,我们提出了一个新的评估度量框架,即参考依赖度量(ReDeM),通过将参考依赖的影响纳入用户搜索行为的建模中来评估查询级搜索。为了测试所提出的框架的整体有效性,(1)我们根据与用户满意度的相关性,评估了基于不同参考点的ReDeMs与三个搜索数据集上广泛使用的指标的性能;(2)在任务难度和任务紧迫性等不同任务状态下,考察了redem的绩效;(3)从判别能力的角度分析了redem的统计信度。实验结果表明:(1)与大多数现有指标(如贴现累积增益(DCG)和秩偏精度(RBP))相比,与适当参考点集成的ReDeMs与用户满意度的相关性更好,即使它们的参数已经经过了很好的调整;(2)当任务触发高水平认知负荷时,相对于现有指标,ReDeMs表现相对较好;(3) ReDeMs的判别能力远强于ERR,略强于Precision,与DCG、RBP和INST相似。据我们所知,本研究首次将参考依赖效应明确纳入用户浏览模型和离线评价指标。我们的工作展示了一种很有前途的方法,可以利用认知心理学对用户偏见的见解来更好地评估用户搜索体验和增强用户模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Reference-Dependent Model for Web Search Evaluation: Understanding and Measuring the Experience of Boundedly Rational Users
Previous researches demonstrate that users’ actions in search interaction are associated with relative gains and losses to reference points, known as the reference dependence effect. However, this widely confirmed effect is not represented in most user models underpinning existing search evaluation metrics. In this study, we propose a new evaluation metric framework, namely Reference Dependent Metric (ReDeM), for assessing query-level search by incorporating the effect of reference dependence into the modelling of user search behavior. To test the overall effectiveness of the proposed framework, (1) we evaluate the performance, in terms of correlation with user satisfaction, of ReDeMs built upon different reference points against that of the widely-used metrics on three search datasets; (2) we examine the performance of ReDeMs under different task states, like task difficulty and task urgency; and (3) we analyze the statistical reliability of ReDeMs in terms of discriminative power. Experimental results indicate that: (1) ReDeMs integrated with a proper reference point achieve better correlations with user satisfaction than most of the existing metrics, like Discounted Cumulative Gain (DCG) and Rank-Biased Precision (RBP), even though their parameters have already been well-tuned; (2) ReDeMs reach relatively better performance compared to existing metrics when the task triggers a high-level cognitive load; (3) the discriminative power of ReDeMs is far stronger than Expected Reciprocal Rank (ERR), slightly stronger than Precision and similar to DCG, RBP and INST. To our knowledge, this study is the first to explicitly incorporate the reference dependence effect into the user browsing model and offline evaluation metrics. Our work illustrates a promising approach to leveraging the insights about user biases from cognitive psychology in better evaluating user search experience and enhancing user models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1