近似优化问题的大规模并行启发式搜索

A. Mahanti, C. J. Daniels, S. Ghosh, M. Evett, A. Pal
{"title":"近似优化问题的大规模并行启发式搜索","authors":"A. Mahanti, C. J. Daniels, S. Ghosh, M. Evett, A. Pal","doi":"10.1109/DMCC.1991.633159","DOIUrl":null,"url":null,"abstract":"Most admissible search algorithms fail to solve reallife problems because of their exponential time and storage requirements. Therefore, to quickljy obtain near-optimal solutions, the use of approximute algorithms and inadmissible heuristics are of practical interest. The use of parallel and distributed ahgorithms [l, 6, 8, 111 further reduces search complexity. I n this paper we present empirical results on a massively parallel search algorithm using a Connection .Machine CM-2. Our algorithm, PBDA', is based on the idea of staged search [9, lo]. Its execution time is directly proportional t o the depth of search, and solution quality is scalable with the number of processors. W e tested it on the 1Bpuzzle problem using both admissible and inadmissible heuristics. The best results gave an average relative error of 1.66% and 66% optimal solutions.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Massively Parallel Heuristic Search for Approximate Optimization Problems\",\"authors\":\"A. Mahanti, C. J. Daniels, S. Ghosh, M. Evett, A. Pal\",\"doi\":\"10.1109/DMCC.1991.633159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most admissible search algorithms fail to solve reallife problems because of their exponential time and storage requirements. Therefore, to quickljy obtain near-optimal solutions, the use of approximute algorithms and inadmissible heuristics are of practical interest. The use of parallel and distributed ahgorithms [l, 6, 8, 111 further reduces search complexity. I n this paper we present empirical results on a massively parallel search algorithm using a Connection .Machine CM-2. Our algorithm, PBDA', is based on the idea of staged search [9, lo]. Its execution time is directly proportional t o the depth of search, and solution quality is scalable with the number of processors. W e tested it on the 1Bpuzzle problem using both admissible and inadmissible heuristics. The best results gave an average relative error of 1.66% and 66% optimal solutions.\",\"PeriodicalId\":313314,\"journal\":{\"name\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1991.633159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数可接受的搜索算法无法解决现实生活中的问题,因为它们的时间和存储需求呈指数级增长。因此,为了快速获得近似最优解,使用近似算法和不可容许启发式是有实际意义的。并行和分布式算法的使用[1,6,8,111]进一步降低了搜索复杂度。在本文中,我们给出了一个使用连接机CM-2的大规模并行搜索算法的实证结果。我们的算法PBDA是基于分阶段搜索的思想[9,10]。它的执行时间与搜索深度成正比,解决方案的质量随处理器数量的增加而增加。我们使用可接受的和不可接受的启发式方法对它进行了测试。最佳结果的平均相对误差为1.66%,最优解为66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Massively Parallel Heuristic Search for Approximate Optimization Problems
Most admissible search algorithms fail to solve reallife problems because of their exponential time and storage requirements. Therefore, to quickljy obtain near-optimal solutions, the use of approximute algorithms and inadmissible heuristics are of practical interest. The use of parallel and distributed ahgorithms [l, 6, 8, 111 further reduces search complexity. I n this paper we present empirical results on a massively parallel search algorithm using a Connection .Machine CM-2. Our algorithm, PBDA', is based on the idea of staged search [9, lo]. Its execution time is directly proportional t o the depth of search, and solution quality is scalable with the number of processors. W e tested it on the 1Bpuzzle problem using both admissible and inadmissible heuristics. The best results gave an average relative error of 1.66% and 66% optimal solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Performance Environments for Parallel Systems Using Spanning-Trees for Balancing Dynamic Load on Multiprocessors Optimal Total Exchange on an SIMD Distributed-Memory Hypercube Structured Parallel Programming on Multicomputers Parallel Solutions to the Phase Problem in X-Ray Crystallography: An Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1