A. Mahanti, C. J. Daniels, S. Ghosh, M. Evett, A. Pal
{"title":"近似优化问题的大规模并行启发式搜索","authors":"A. Mahanti, C. J. Daniels, S. Ghosh, M. Evett, A. Pal","doi":"10.1109/DMCC.1991.633159","DOIUrl":null,"url":null,"abstract":"Most admissible search algorithms fail to solve reallife problems because of their exponential time and storage requirements. Therefore, to quickljy obtain near-optimal solutions, the use of approximute algorithms and inadmissible heuristics are of practical interest. The use of parallel and distributed ahgorithms [l, 6, 8, 111 further reduces search complexity. I n this paper we present empirical results on a massively parallel search algorithm using a Connection .Machine CM-2. Our algorithm, PBDA', is based on the idea of staged search [9, lo]. Its execution time is directly proportional t o the depth of search, and solution quality is scalable with the number of processors. W e tested it on the 1Bpuzzle problem using both admissible and inadmissible heuristics. The best results gave an average relative error of 1.66% and 66% optimal solutions.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Massively Parallel Heuristic Search for Approximate Optimization Problems\",\"authors\":\"A. Mahanti, C. J. Daniels, S. Ghosh, M. Evett, A. Pal\",\"doi\":\"10.1109/DMCC.1991.633159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most admissible search algorithms fail to solve reallife problems because of their exponential time and storage requirements. Therefore, to quickljy obtain near-optimal solutions, the use of approximute algorithms and inadmissible heuristics are of practical interest. The use of parallel and distributed ahgorithms [l, 6, 8, 111 further reduces search complexity. I n this paper we present empirical results on a massively parallel search algorithm using a Connection .Machine CM-2. Our algorithm, PBDA', is based on the idea of staged search [9, lo]. Its execution time is directly proportional t o the depth of search, and solution quality is scalable with the number of processors. W e tested it on the 1Bpuzzle problem using both admissible and inadmissible heuristics. The best results gave an average relative error of 1.66% and 66% optimal solutions.\",\"PeriodicalId\":313314,\"journal\":{\"name\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1991.633159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Massively Parallel Heuristic Search for Approximate Optimization Problems
Most admissible search algorithms fail to solve reallife problems because of their exponential time and storage requirements. Therefore, to quickljy obtain near-optimal solutions, the use of approximute algorithms and inadmissible heuristics are of practical interest. The use of parallel and distributed ahgorithms [l, 6, 8, 111 further reduces search complexity. I n this paper we present empirical results on a massively parallel search algorithm using a Connection .Machine CM-2. Our algorithm, PBDA', is based on the idea of staged search [9, lo]. Its execution time is directly proportional t o the depth of search, and solution quality is scalable with the number of processors. W e tested it on the 1Bpuzzle problem using both admissible and inadmissible heuristics. The best results gave an average relative error of 1.66% and 66% optimal solutions.