基于贝叶斯网络的客户流失分析模型

Peng Sun, Xin Guo, Yunpeng Zhang, Zi-yan Wu
{"title":"基于贝叶斯网络的客户流失分析模型","authors":"Peng Sun, Xin Guo, Yunpeng Zhang, Zi-yan Wu","doi":"10.1109/CIS.2013.63","DOIUrl":null,"url":null,"abstract":"A customer churn analytical model based Bayesian network is built for prediction of customer churn. We propose Bayesian Network approaches to predict churn motivation, mining the result in churn characters in order to help decision-making manager formulate corresponding detainment strategy. Experimental results show that classification performance of both methods is resultful.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analytical Model of Customer Churn Based on Bayesian Network\",\"authors\":\"Peng Sun, Xin Guo, Yunpeng Zhang, Zi-yan Wu\",\"doi\":\"10.1109/CIS.2013.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A customer churn analytical model based Bayesian network is built for prediction of customer churn. We propose Bayesian Network approaches to predict churn motivation, mining the result in churn characters in order to help decision-making manager formulate corresponding detainment strategy. Experimental results show that classification performance of both methods is resultful.\",\"PeriodicalId\":294223,\"journal\":{\"name\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2013.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

建立了基于贝叶斯网络的客户流失分析模型,用于客户流失预测。我们提出了贝叶斯网络方法来预测流失动机,挖掘流失特征的结果,以帮助决策管理者制定相应的留住策略。实验结果表明,两种方法的分类效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical Model of Customer Churn Based on Bayesian Network
A customer churn analytical model based Bayesian network is built for prediction of customer churn. We propose Bayesian Network approaches to predict churn motivation, mining the result in churn characters in order to help decision-making manager formulate corresponding detainment strategy. Experimental results show that classification performance of both methods is resultful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Co-op Advertising Analysis within a Supply Chain Based on the Three-Stage Non-cooperate Dynamic Game Model Study on Pseudorandomness of Some Pseudorandom Number Generators with Application The Superiority Analysis of Linear Frequency Modulation and Barker Code Composite Radar Signal The Improvement of the Commonly Used Linear Polynomial Selection Methods A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1