零工经济平台的用户需求:情感分析方法

Nadina Adelia Indrawan, Y. G. Sucahyo, Y. Ruldeviyani, Arfive Gandhi
{"title":"零工经济平台的用户需求:情感分析方法","authors":"Nadina Adelia Indrawan, Y. G. Sucahyo, Y. Ruldeviyani, Arfive Gandhi","doi":"10.1109/ICSITech49800.2020.9392060","DOIUrl":null,"url":null,"abstract":"Gig economy-based mobile applications are increasingly in demand by the public. An increment in the number of users rises the number of downloads and reviews. However, the number of reviews makes it difficult for developers to understand the information contained in reviews. Besides, one review can have a variety of information. This study proposes a model that can categorize content and sentiment reviews using Support Vector Machine (SVM), Multinomial Naïve Bayes, Complement Naïve Bayes classifier, and Binary Relevance, Classifier Chain, and Label Power Sets as the data transformation method. This study used the reviews contained in the Gojek, Sampingan, and Ruang Guru applications, with 10,123 reviews. This study found the review text’s length influenced accuracy based on the evaluation of Gojek application. Generally, this study results showed that the SVM algorithm (both in the classification of sentiment reviews and review categorization) and Label Power Sets as the transformation method, yielded the best accuracy.","PeriodicalId":408532,"journal":{"name":"2020 6th International Conference on Science in Information Technology (ICSITech)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"What Users Want for Gig Economy Platforms: Sentiment Analysis Approach\",\"authors\":\"Nadina Adelia Indrawan, Y. G. Sucahyo, Y. Ruldeviyani, Arfive Gandhi\",\"doi\":\"10.1109/ICSITech49800.2020.9392060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gig economy-based mobile applications are increasingly in demand by the public. An increment in the number of users rises the number of downloads and reviews. However, the number of reviews makes it difficult for developers to understand the information contained in reviews. Besides, one review can have a variety of information. This study proposes a model that can categorize content and sentiment reviews using Support Vector Machine (SVM), Multinomial Naïve Bayes, Complement Naïve Bayes classifier, and Binary Relevance, Classifier Chain, and Label Power Sets as the data transformation method. This study used the reviews contained in the Gojek, Sampingan, and Ruang Guru applications, with 10,123 reviews. This study found the review text’s length influenced accuracy based on the evaluation of Gojek application. Generally, this study results showed that the SVM algorithm (both in the classification of sentiment reviews and review categorization) and Label Power Sets as the transformation method, yielded the best accuracy.\",\"PeriodicalId\":408532,\"journal\":{\"name\":\"2020 6th International Conference on Science in Information Technology (ICSITech)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Science in Information Technology (ICSITech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSITech49800.2020.9392060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITech49800.2020.9392060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大众对基于零工经济的移动应用程序的需求越来越大。用户数量的增加将推动下载量和评论数的增长。然而,评论的数量使得开发人员很难理解评论中包含的信息。此外,一次复习可以包含多种信息。本研究提出了一种使用支持向量机(SVM)、多项式Naïve贝叶斯、互补Naïve贝叶斯分类器以及二值关联、分类器链和标签功率集作为数据转换方法对内容和情感评论进行分类的模型。本研究使用了Gojek、Sampingan和Ruang Guru应用程序中包含的评论,共有10,123条评论。本研究通过对Gojek应用的评价,发现复习文本的长度影响准确率。总的来说,本研究结果表明,SVM算法(包括情感评论分类和评论分类)和Label Power Sets作为转换方法获得了最好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What Users Want for Gig Economy Platforms: Sentiment Analysis Approach
Gig economy-based mobile applications are increasingly in demand by the public. An increment in the number of users rises the number of downloads and reviews. However, the number of reviews makes it difficult for developers to understand the information contained in reviews. Besides, one review can have a variety of information. This study proposes a model that can categorize content and sentiment reviews using Support Vector Machine (SVM), Multinomial Naïve Bayes, Complement Naïve Bayes classifier, and Binary Relevance, Classifier Chain, and Label Power Sets as the data transformation method. This study used the reviews contained in the Gojek, Sampingan, and Ruang Guru applications, with 10,123 reviews. This study found the review text’s length influenced accuracy based on the evaluation of Gojek application. Generally, this study results showed that the SVM algorithm (both in the classification of sentiment reviews and review categorization) and Label Power Sets as the transformation method, yielded the best accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Long Short Term Memory Implemented for Rainfall Forecasting A Comparative Analysis of QoS parameters measurement applying packet scheduling algorithms on Cisco 2800 Router with Static Routing A Review of Intrusion Detection System in IoT with Machine Learning Approach: Current and Future Research Face Skin Disease Detection with Textural Feature Extraction Cleavage self : a new concept in reproduction stage of genetic algorithm for rainfall prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1