{"title":"多类型关联数据对象的潜在语义分析","authors":"Xuanhui Wang, Jian-Tao Sun, Zheng Chen, ChengXiang Zhai","doi":"10.1145/1148170.1148214","DOIUrl":null,"url":null,"abstract":"Co-occurrence data is quite common in many real applications. Latent Semantic Analysis (LSA) has been successfully used to identify semantic relations in such data. However, LSA can only handle a single co-occurrence relationship between two types of objects. In practical applications, there are many cases where multiple types of objects exist and any pair of these objects could have a pairwise co-occurrence relation. All these co-occurrence relations can be exploited to alleviate data sparseness or to represent objects more meaningfully. In this paper, we propose a novel algorithm, M-LSA, which conducts latent semantic analysis by incorporating all pairwise co-occurrences among multiple types of objects. Based on the mutual reinforcement principle, M-LSA identifies the most salient concepts among the co-occurrence data and represents all the objects in a unified semantic space. M-LSA is general and we show that several variants of LSA are special cases of our algorithm. Experiment results show that M-LSA outperforms LSA on multiple applications, including collaborative filtering, text clustering, and text categorization.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Latent semantic analysis for multiple-type interrelated data objects\",\"authors\":\"Xuanhui Wang, Jian-Tao Sun, Zheng Chen, ChengXiang Zhai\",\"doi\":\"10.1145/1148170.1148214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-occurrence data is quite common in many real applications. Latent Semantic Analysis (LSA) has been successfully used to identify semantic relations in such data. However, LSA can only handle a single co-occurrence relationship between two types of objects. In practical applications, there are many cases where multiple types of objects exist and any pair of these objects could have a pairwise co-occurrence relation. All these co-occurrence relations can be exploited to alleviate data sparseness or to represent objects more meaningfully. In this paper, we propose a novel algorithm, M-LSA, which conducts latent semantic analysis by incorporating all pairwise co-occurrences among multiple types of objects. Based on the mutual reinforcement principle, M-LSA identifies the most salient concepts among the co-occurrence data and represents all the objects in a unified semantic space. M-LSA is general and we show that several variants of LSA are special cases of our algorithm. Experiment results show that M-LSA outperforms LSA on multiple applications, including collaborative filtering, text clustering, and text categorization.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Latent semantic analysis for multiple-type interrelated data objects
Co-occurrence data is quite common in many real applications. Latent Semantic Analysis (LSA) has been successfully used to identify semantic relations in such data. However, LSA can only handle a single co-occurrence relationship between two types of objects. In practical applications, there are many cases where multiple types of objects exist and any pair of these objects could have a pairwise co-occurrence relation. All these co-occurrence relations can be exploited to alleviate data sparseness or to represent objects more meaningfully. In this paper, we propose a novel algorithm, M-LSA, which conducts latent semantic analysis by incorporating all pairwise co-occurrences among multiple types of objects. Based on the mutual reinforcement principle, M-LSA identifies the most salient concepts among the co-occurrence data and represents all the objects in a unified semantic space. M-LSA is general and we show that several variants of LSA are special cases of our algorithm. Experiment results show that M-LSA outperforms LSA on multiple applications, including collaborative filtering, text clustering, and text categorization.