车辆立体声校准

T. Dang, C. Hoffmann
{"title":"车辆立体声校准","authors":"T. Dang, C. Hoffmann","doi":"10.1109/IVS.2004.1336393","DOIUrl":null,"url":null,"abstract":"In this paper we present a self-calibration approach that updates the extrinsic parameters and the focal lengths of a stereo vision sensor. We employ a recursive estimation algorithm based on an Extended Kalman Filter. To improve the self-calibration process, we introduce a robust innovation stage for the Kalman filter: A Least Median Squares estimator is employed to eliminate outliers and thus to achieve better performance. The algorithm gives promising results on experiments with synthetic and natural imagery.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Stereo calibration in vehicles\",\"authors\":\"T. Dang, C. Hoffmann\",\"doi\":\"10.1109/IVS.2004.1336393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a self-calibration approach that updates the extrinsic parameters and the focal lengths of a stereo vision sensor. We employ a recursive estimation algorithm based on an Extended Kalman Filter. To improve the self-calibration process, we introduce a robust innovation stage for the Kalman filter: A Least Median Squares estimator is employed to eliminate outliers and thus to achieve better performance. The algorithm gives promising results on experiments with synthetic and natural imagery.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种更新立体视觉传感器外部参数和焦距的自校准方法。我们采用了一种基于扩展卡尔曼滤波的递归估计算法。为了改进自校准过程,我们为卡尔曼滤波器引入了一个鲁棒创新阶段:使用最小中值二乘估计器来消除异常值,从而获得更好的性能。该算法在合成图像和自然图像的实验中都取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stereo calibration in vehicles
In this paper we present a self-calibration approach that updates the extrinsic parameters and the focal lengths of a stereo vision sensor. We employ a recursive estimation algorithm based on an Extended Kalman Filter. To improve the self-calibration process, we introduce a robust innovation stage for the Kalman filter: A Least Median Squares estimator is employed to eliminate outliers and thus to achieve better performance. The algorithm gives promising results on experiments with synthetic and natural imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an instrumented vehicle test bed for developing a human centered driver support system Defect detection on rail surfaces by a vision based system Probabilistic contour extraction with model-switching for vehicle localization A fuzzy ranking method for automated highway driving Fusion of range and vision for real-time motion estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1