{"title":"车辆立体声校准","authors":"T. Dang, C. Hoffmann","doi":"10.1109/IVS.2004.1336393","DOIUrl":null,"url":null,"abstract":"In this paper we present a self-calibration approach that updates the extrinsic parameters and the focal lengths of a stereo vision sensor. We employ a recursive estimation algorithm based on an Extended Kalman Filter. To improve the self-calibration process, we introduce a robust innovation stage for the Kalman filter: A Least Median Squares estimator is employed to eliminate outliers and thus to achieve better performance. The algorithm gives promising results on experiments with synthetic and natural imagery.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Stereo calibration in vehicles\",\"authors\":\"T. Dang, C. Hoffmann\",\"doi\":\"10.1109/IVS.2004.1336393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a self-calibration approach that updates the extrinsic parameters and the focal lengths of a stereo vision sensor. We employ a recursive estimation algorithm based on an Extended Kalman Filter. To improve the self-calibration process, we introduce a robust innovation stage for the Kalman filter: A Least Median Squares estimator is employed to eliminate outliers and thus to achieve better performance. The algorithm gives promising results on experiments with synthetic and natural imagery.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we present a self-calibration approach that updates the extrinsic parameters and the focal lengths of a stereo vision sensor. We employ a recursive estimation algorithm based on an Extended Kalman Filter. To improve the self-calibration process, we introduce a robust innovation stage for the Kalman filter: A Least Median Squares estimator is employed to eliminate outliers and thus to achieve better performance. The algorithm gives promising results on experiments with synthetic and natural imagery.