认知动态无线系统的自主优化技术

M. Hasegawa, Y. Kon, K. Ishizu, H. Murakami, H. Harada
{"title":"认知动态无线系统的自主优化技术","authors":"M. Hasegawa, Y. Kon, K. Ishizu, H. Murakami, H. Harada","doi":"10.1109/WCNCW.2012.6215535","DOIUrl":null,"url":null,"abstract":"This paper shows autonomous optimization techniques for distributed cognitive radio architecture. Based on the context information exchange mechanism standardized in IEEE1900.4, we assume that the terminals can obtain various types of context information of radio access networks (RANs) and they can make optimal decisions by themselves using the shared information. In our research, we apply the neural network based algorithms, the learning algorithms and the distributed optimization algorithms, to realize autonomous optimization of the cognitive networks. We apply the proposed schemes to the heterogeneous type cognitive radio, whose radio resource usage can be optimized by appropriate RAN selection. First, we apply learning algorithms to appropriate parameter selection for each RAN to maximize the aggregated throughput using multiple RANs. We show that our developed autonomous learning system can autonomously improve the throughput. We also apply a neural network based optimization technique to optimize radio resource usage of the entire network. We show that the proposed scheme can distributively optimize the entire network as an autonomous cognitive dynamic wireless system.","PeriodicalId":392329,"journal":{"name":"2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous optimization techniques for cognitive dynamic wireless systems\",\"authors\":\"M. Hasegawa, Y. Kon, K. Ishizu, H. Murakami, H. Harada\",\"doi\":\"10.1109/WCNCW.2012.6215535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows autonomous optimization techniques for distributed cognitive radio architecture. Based on the context information exchange mechanism standardized in IEEE1900.4, we assume that the terminals can obtain various types of context information of radio access networks (RANs) and they can make optimal decisions by themselves using the shared information. In our research, we apply the neural network based algorithms, the learning algorithms and the distributed optimization algorithms, to realize autonomous optimization of the cognitive networks. We apply the proposed schemes to the heterogeneous type cognitive radio, whose radio resource usage can be optimized by appropriate RAN selection. First, we apply learning algorithms to appropriate parameter selection for each RAN to maximize the aggregated throughput using multiple RANs. We show that our developed autonomous learning system can autonomously improve the throughput. We also apply a neural network based optimization technique to optimize radio resource usage of the entire network. We show that the proposed scheme can distributively optimize the entire network as an autonomous cognitive dynamic wireless system.\",\"PeriodicalId\":392329,\"journal\":{\"name\":\"2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2012.6215535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2012.6215535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了分布式认知无线电体系结构的自主优化技术。基于IEEE1900.4标准的上下文信息交换机制,我们假设终端可以获取无线接入网的各种类型的上下文信息,并利用共享的信息自行进行最优决策。在我们的研究中,我们应用了基于神经网络的算法、学习算法和分布式优化算法,实现了认知网络的自主优化。我们将所提出的方案应用于异构型认知无线电,通过适当的RAN选择可以优化其无线电资源的利用。首先,我们应用学习算法为每个RAN选择适当的参数,以最大化使用多个RAN的聚合吞吐量。研究表明,自主学习系统能够自主提高吞吐量。我们还应用了一种基于神经网络的优化技术来优化整个网络的无线电资源使用。结果表明,该方案可以作为一个自主认知动态无线系统对整个网络进行分布式优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous optimization techniques for cognitive dynamic wireless systems
This paper shows autonomous optimization techniques for distributed cognitive radio architecture. Based on the context information exchange mechanism standardized in IEEE1900.4, we assume that the terminals can obtain various types of context information of radio access networks (RANs) and they can make optimal decisions by themselves using the shared information. In our research, we apply the neural network based algorithms, the learning algorithms and the distributed optimization algorithms, to realize autonomous optimization of the cognitive networks. We apply the proposed schemes to the heterogeneous type cognitive radio, whose radio resource usage can be optimized by appropriate RAN selection. First, we apply learning algorithms to appropriate parameter selection for each RAN to maximize the aggregated throughput using multiple RANs. We show that our developed autonomous learning system can autonomously improve the throughput. We also apply a neural network based optimization technique to optimize radio resource usage of the entire network. We show that the proposed scheme can distributively optimize the entire network as an autonomous cognitive dynamic wireless system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intra-vehicle UWB MIMO channel capacity Per-energy capacity and handoff strategies in macro-femto cells environment Exploring passenger dynamics and connectivities in Beijing underground via bluetooth networks UWB channel modeling for objects evolving in impulsive environnements How Virtual Police Agents can help in the traffic guidance?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1