{"title":"近场扫描光学显微镜的迭代学习控制","authors":"Marian P. Chaffe, L. Pao","doi":"10.1109/CCA.2011.6044386","DOIUrl":null,"url":null,"abstract":"Near-field scanning optical microscopes (NSOMs) construct images from optical properties recorded by a scanning probe as a sample is passed under a solid immersion lens (SIL) and a laser source. An air gap between the SIL and the sample must be maintained at a distance given in nanometers that is less than the wavelength of the laser source. Regulation of the air gap demands an accurate and fast controller. While lead-lag compensation has been successfully implemented as the feedback controller, the addition of feedforward or iterative learning control (ILC) can offer improved transient performance with significantly reduced overshoot. A serial ILC design is implemented upon a closed-loop system and the resulting performance is evaluated.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative learning control for near-field scanning optical microscope applications\",\"authors\":\"Marian P. Chaffe, L. Pao\",\"doi\":\"10.1109/CCA.2011.6044386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-field scanning optical microscopes (NSOMs) construct images from optical properties recorded by a scanning probe as a sample is passed under a solid immersion lens (SIL) and a laser source. An air gap between the SIL and the sample must be maintained at a distance given in nanometers that is less than the wavelength of the laser source. Regulation of the air gap demands an accurate and fast controller. While lead-lag compensation has been successfully implemented as the feedback controller, the addition of feedforward or iterative learning control (ILC) can offer improved transient performance with significantly reduced overshoot. A serial ILC design is implemented upon a closed-loop system and the resulting performance is evaluated.\",\"PeriodicalId\":208713,\"journal\":{\"name\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2011.6044386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterative learning control for near-field scanning optical microscope applications
Near-field scanning optical microscopes (NSOMs) construct images from optical properties recorded by a scanning probe as a sample is passed under a solid immersion lens (SIL) and a laser source. An air gap between the SIL and the sample must be maintained at a distance given in nanometers that is less than the wavelength of the laser source. Regulation of the air gap demands an accurate and fast controller. While lead-lag compensation has been successfully implemented as the feedback controller, the addition of feedforward or iterative learning control (ILC) can offer improved transient performance with significantly reduced overshoot. A serial ILC design is implemented upon a closed-loop system and the resulting performance is evaluated.