教学系统功能的非线性数学模型

I. Konopleva, Anna R. Sibireva
{"title":"教学系统功能的非线性数学模型","authors":"I. Konopleva, Anna R. Sibireva","doi":"10.33065/2307-1052-2020-4-34-93-98","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to study the crisis in pedagogical systems from the point of view of an internal observer. The aim of the work is to build and investigate a mathematical model describing the course of crises in pedagogical systems. When building the model, a synergetic methodology, system and process approaches are used. For the mathematical analysis of various social phenomena, systems of differential equations are used to investigate the dynamics of the process. The paper considers a system of nonlinear differential equations in three-dimensional space that describes the functioning of the pedagogical system during the crisis. Numerical and topological methods of nonlinear dynamics, the method of Lyapunov characteristic exponents and the theory of strange attractors by Lorentz were used to study it. Numerical modeling of system solutions for various sets of control parameters (system coefficients) makes it possible to determine the region of stability (asymptotic stability), limit cycles, bifurcation points, and describe possible trajectories of development of the pedagogical system. Mathematical modeling deepens the knowledge about the essence of crises, the peculiarities of their course, makes it possible to study qualitative and numerical modeling, and also allows predicting possible effective measures to combat crisis phenomena and develop new approaches in the management of pedagogical systems.","PeriodicalId":326234,"journal":{"name":"Volga Region Pedagogical Search","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NONLINEAR MATHEMATICAL MODEL OF PEDAGOGICAL SYSTEM FUNCTIONING\",\"authors\":\"I. Konopleva, Anna R. Sibireva\",\"doi\":\"10.33065/2307-1052-2020-4-34-93-98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to study the crisis in pedagogical systems from the point of view of an internal observer. The aim of the work is to build and investigate a mathematical model describing the course of crises in pedagogical systems. When building the model, a synergetic methodology, system and process approaches are used. For the mathematical analysis of various social phenomena, systems of differential equations are used to investigate the dynamics of the process. The paper considers a system of nonlinear differential equations in three-dimensional space that describes the functioning of the pedagogical system during the crisis. Numerical and topological methods of nonlinear dynamics, the method of Lyapunov characteristic exponents and the theory of strange attractors by Lorentz were used to study it. Numerical modeling of system solutions for various sets of control parameters (system coefficients) makes it possible to determine the region of stability (asymptotic stability), limit cycles, bifurcation points, and describe possible trajectories of development of the pedagogical system. Mathematical modeling deepens the knowledge about the essence of crises, the peculiarities of their course, makes it possible to study qualitative and numerical modeling, and also allows predicting possible effective measures to combat crisis phenomena and develop new approaches in the management of pedagogical systems.\",\"PeriodicalId\":326234,\"journal\":{\"name\":\"Volga Region Pedagogical Search\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volga Region Pedagogical Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33065/2307-1052-2020-4-34-93-98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volga Region Pedagogical Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33065/2307-1052-2020-4-34-93-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是从一个内部观察者的角度来研究教育系统的危机。这项工作的目的是建立和研究一个描述教育系统危机过程的数学模型。在构建模型时,使用了协同的方法、系统和过程方法。对于各种社会现象的数学分析,微分方程系统被用来研究过程的动力学。本文考虑了一个三维空间的非线性微分方程组,它描述了危机期间教学系统的功能。利用非线性动力学的数值和拓扑方法、李雅普诺夫特征指数法和洛伦兹奇异吸引子理论对其进行了研究。对各种控制参数(系统系数)的系统解进行数值模拟,可以确定稳定性(渐近稳定性)、极限环、分岔点的区域,并描述教学系统发展的可能轨迹。数学建模加深了对危机本质的认识,他们的课程的特点,使研究定性和数值建模成为可能,也允许预测可能有效的措施来对抗危机现象,并在教学系统管理中开发新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NONLINEAR MATHEMATICAL MODEL OF PEDAGOGICAL SYSTEM FUNCTIONING
The purpose of this article is to study the crisis in pedagogical systems from the point of view of an internal observer. The aim of the work is to build and investigate a mathematical model describing the course of crises in pedagogical systems. When building the model, a synergetic methodology, system and process approaches are used. For the mathematical analysis of various social phenomena, systems of differential equations are used to investigate the dynamics of the process. The paper considers a system of nonlinear differential equations in three-dimensional space that describes the functioning of the pedagogical system during the crisis. Numerical and topological methods of nonlinear dynamics, the method of Lyapunov characteristic exponents and the theory of strange attractors by Lorentz were used to study it. Numerical modeling of system solutions for various sets of control parameters (system coefficients) makes it possible to determine the region of stability (asymptotic stability), limit cycles, bifurcation points, and describe possible trajectories of development of the pedagogical system. Mathematical modeling deepens the knowledge about the essence of crises, the peculiarities of their course, makes it possible to study qualitative and numerical modeling, and also allows predicting possible effective measures to combat crisis phenomena and develop new approaches in the management of pedagogical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing Academic Mobility of Students at Mari State University University in Cultural Dimension of Urban Ecosystem: Analysis of Russian Experience and Modern International Trends Ethics and Etiquette in Intercultural Scientific Communication Universities Joining the International Scientific and Educational Space: Experience and Problems (Experience of the European North of Russia) Practice of Academic Mobility of Astrakhan State Medical University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1