cDNA微阵列图像的无参数自动斑点检测方法

Iman Rezaeian, L. Rueda
{"title":"cDNA微阵列图像的无参数自动斑点检测方法","authors":"Iman Rezaeian, L. Rueda","doi":"10.1109/BIBM.2010.5706596","DOIUrl":null,"url":null,"abstract":"Gridding cDNA microarray images is a critical step in gene expression analysis, since any errors in this stage are propagated in future steps in the analysis. We propose a fully automatic approach to detect the locations of the spots. The approach first detects and corrects rotations in the sub-grids by an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm that finds the positions of the spots. Additionally, a new validity index is proposed in order to find the correct number of spots in each sub-grid, followed by a refinement procedure used to improve the performance of the method. Extensive experiments on real-life microarray images show that the proposed method performs these tasks automatically and with very high accuracy.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A parameterless automatic spot detection method for cDNA microarray images\",\"authors\":\"Iman Rezaeian, L. Rueda\",\"doi\":\"10.1109/BIBM.2010.5706596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gridding cDNA microarray images is a critical step in gene expression analysis, since any errors in this stage are propagated in future steps in the analysis. We propose a fully automatic approach to detect the locations of the spots. The approach first detects and corrects rotations in the sub-grids by an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm that finds the positions of the spots. Additionally, a new validity index is proposed in order to find the correct number of spots in each sub-grid, followed by a refinement procedure used to improve the performance of the method. Extensive experiments on real-life microarray images show that the proposed method performs these tasks automatically and with very high accuracy.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对cDNA微阵列图像进行网格化是基因表达分析的关键步骤,因为这一阶段的任何错误都会在分析的后续步骤中传播。我们提出了一种全自动的方法来检测斑点的位置。该方法首先通过仿射变换检测和校正子网格中的旋转,然后使用多项式时间最优多级阈值算法找到斑点的位置。此外,提出了一种新的有效性指标,以便在每个子网格中找到正确的点数,然后通过改进程序来提高方法的性能。在实际微阵列图像上进行的大量实验表明,所提出的方法可以自动执行这些任务,并且具有很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A parameterless automatic spot detection method for cDNA microarray images
Gridding cDNA microarray images is a critical step in gene expression analysis, since any errors in this stage are propagated in future steps in the analysis. We propose a fully automatic approach to detect the locations of the spots. The approach first detects and corrects rotations in the sub-grids by an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm that finds the positions of the spots. Additionally, a new validity index is proposed in order to find the correct number of spots in each sub-grid, followed by a refinement procedure used to improve the performance of the method. Extensive experiments on real-life microarray images show that the proposed method performs these tasks automatically and with very high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1