Siyuan Li, Luanhao Lu, Zhiqiang Zhang, Xin Cheng, Kepeng Xu, Wenxin Yu, Gang He, Jinjia Zhou, Zhuo Yang
{"title":"用于图像绘制的交互式分离网络","authors":"Siyuan Li, Luanhao Lu, Zhiqiang Zhang, Xin Cheng, Kepeng Xu, Wenxin Yu, Gang He, Jinjia Zhou, Zhuo Yang","doi":"10.1109/ICIP40778.2020.9191263","DOIUrl":null,"url":null,"abstract":"Image inpainting, also known as image completion, is the process of filling in the missing region of an incomplete image to make the repaired image visually plausible. Strided convolutional layer learns high-level representations while reducing the computational complexity, but fails to preserve existing detail from the original images (eg, texture, sharp transients), therefore it degrades the generative model in image inpainting task. To reduce the erosion of high-resolution components of images meanwhile maintaining the semantic representation, this paper designs a brand-new network called Interactive Separation Network that progressively decomposites the features into two streams and fuses them. Besides, the rationality of network design and the efficiency of proposed network is demonstrated in the ablation study. To the best of our knowledge, the experimental results of proposed method are superior to state-of-the-art inpainting approaches.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Interactive Separation Network For Image Inpainting\",\"authors\":\"Siyuan Li, Luanhao Lu, Zhiqiang Zhang, Xin Cheng, Kepeng Xu, Wenxin Yu, Gang He, Jinjia Zhou, Zhuo Yang\",\"doi\":\"10.1109/ICIP40778.2020.9191263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image inpainting, also known as image completion, is the process of filling in the missing region of an incomplete image to make the repaired image visually plausible. Strided convolutional layer learns high-level representations while reducing the computational complexity, but fails to preserve existing detail from the original images (eg, texture, sharp transients), therefore it degrades the generative model in image inpainting task. To reduce the erosion of high-resolution components of images meanwhile maintaining the semantic representation, this paper designs a brand-new network called Interactive Separation Network that progressively decomposites the features into two streams and fuses them. Besides, the rationality of network design and the efficiency of proposed network is demonstrated in the ablation study. To the best of our knowledge, the experimental results of proposed method are superior to state-of-the-art inpainting approaches.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive Separation Network For Image Inpainting
Image inpainting, also known as image completion, is the process of filling in the missing region of an incomplete image to make the repaired image visually plausible. Strided convolutional layer learns high-level representations while reducing the computational complexity, but fails to preserve existing detail from the original images (eg, texture, sharp transients), therefore it degrades the generative model in image inpainting task. To reduce the erosion of high-resolution components of images meanwhile maintaining the semantic representation, this paper designs a brand-new network called Interactive Separation Network that progressively decomposites the features into two streams and fuses them. Besides, the rationality of network design and the efficiency of proposed network is demonstrated in the ablation study. To the best of our knowledge, the experimental results of proposed method are superior to state-of-the-art inpainting approaches.