COVID-GAN:通过时空条件生成对抗网络估计人类对COVID-19大流行的流动性反应

Han Bao, Xun Zhou, Yingxue Zhang, Yanhua Li, Yiqun Xie
{"title":"COVID-GAN:通过时空条件生成对抗网络估计人类对COVID-19大流行的流动性反应","authors":"Han Bao, Xun Zhou, Yingxue Zhang, Yanhua Li, Yiqun Xie","doi":"10.1145/3397536.3422261","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has posed grand challenges to policy makers, raising major social conflicts between public health and economic resilience. Policies such as closure or reopen of businesses are made based on scientific projections of infection risks obtained from infection dynamics models. While most parameters in infection dynamics models can be set using domain knowledge of COVID-19, a key parameter - human mobility - is often challenging to estimate due to complex social contexts and limited training data under escalating COVID-19 conditions. To address these challenges, we formulate the problem as a spatio-temporal data generation problem and propose COVID-GAN, a spatio-temporal Conditional Generative Adversarial Network, to estimate mobility (e.g., changes in POI visits) under various real-world conditions (e.g., COVID-19 severity, local policy interventions) integrated from multiple data sources. We also introduce a domain-constraint correction layer in the generator of COVID-GAN to reduce the difficulty of learning. Experiments using urban mobility data derived from cell phone records and census data show that COVID-GAN can well approximate real-world human mobility responses, and that the proposed domain-constraint based correction can greatly improve solution quality.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"COVID-GAN: Estimating Human Mobility Responses to COVID-19 Pandemic through Spatio-Temporal Conditional Generative Adversarial Networks\",\"authors\":\"Han Bao, Xun Zhou, Yingxue Zhang, Yanhua Li, Yiqun Xie\",\"doi\":\"10.1145/3397536.3422261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic has posed grand challenges to policy makers, raising major social conflicts between public health and economic resilience. Policies such as closure or reopen of businesses are made based on scientific projections of infection risks obtained from infection dynamics models. While most parameters in infection dynamics models can be set using domain knowledge of COVID-19, a key parameter - human mobility - is often challenging to estimate due to complex social contexts and limited training data under escalating COVID-19 conditions. To address these challenges, we formulate the problem as a spatio-temporal data generation problem and propose COVID-GAN, a spatio-temporal Conditional Generative Adversarial Network, to estimate mobility (e.g., changes in POI visits) under various real-world conditions (e.g., COVID-19 severity, local policy interventions) integrated from multiple data sources. We also introduce a domain-constraint correction layer in the generator of COVID-GAN to reduce the difficulty of learning. Experiments using urban mobility data derived from cell phone records and census data show that COVID-GAN can well approximate real-world human mobility responses, and that the proposed domain-constraint based correction can greatly improve solution quality.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

2019冠状病毒病大流行给决策者带来了巨大挑战,引发了公共卫生与经济复原力之间的重大社会冲突。关闭或重新营业等政策是根据感染动态模型对感染风险的科学预测制定的。虽然感染动力学模型中的大多数参数可以使用COVID-19的领域知识进行设置,但由于复杂的社会背景和不断升级的COVID-19条件下有限的训练数据,一个关键参数-人类流动性-往往难以估计。为了应对这些挑战,我们将该问题定义为一个时空数据生成问题,并提出了一种时空条件生成对抗网络COVID-GAN,用于从多个数据源集成估算各种现实条件(例如,COVID-19严重程度、当地政策干预)下的流动性(例如,POI访问的变化)。我们还在COVID-GAN的生成器中引入了域约束校正层,以降低学习难度。使用来自手机记录和人口普查数据的城市交通数据进行的实验表明,COVID-GAN可以很好地近似真实世界的人类交通响应,并且基于域约束的修正可以大大提高解决方案的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-GAN: Estimating Human Mobility Responses to COVID-19 Pandemic through Spatio-Temporal Conditional Generative Adversarial Networks
The COVID-19 pandemic has posed grand challenges to policy makers, raising major social conflicts between public health and economic resilience. Policies such as closure or reopen of businesses are made based on scientific projections of infection risks obtained from infection dynamics models. While most parameters in infection dynamics models can be set using domain knowledge of COVID-19, a key parameter - human mobility - is often challenging to estimate due to complex social contexts and limited training data under escalating COVID-19 conditions. To address these challenges, we formulate the problem as a spatio-temporal data generation problem and propose COVID-GAN, a spatio-temporal Conditional Generative Adversarial Network, to estimate mobility (e.g., changes in POI visits) under various real-world conditions (e.g., COVID-19 severity, local policy interventions) integrated from multiple data sources. We also introduce a domain-constraint correction layer in the generator of COVID-GAN to reduce the difficulty of learning. Experiments using urban mobility data derived from cell phone records and census data show that COVID-GAN can well approximate real-world human mobility responses, and that the proposed domain-constraint based correction can greatly improve solution quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1